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Abstract
We address the problem of variational optical flow for outdoor video processing applications that
need fast operation and robustness to drastic variations in illumination. Recently, a solution has been
proposed [12] based on the photometric invariants of the dichromatic reflection model [15]. However,
this solution is only applicable to colour videos up to the validity of the dichromatic model. We
propose a fast, illumination-robust variational scheme based on cross-correlation and applicable to
both colour and greyscale sequences. We derive an explicit linearised algorithm for cross-correlation
based variational optical flow and test the algorithm on challenging video data.

1 Introduction

Outdoor applications of machine vision such as vision-based intelligent vehicles [3], surveillance and
traffic monitoring [9] require fast and robust solutions capable of handling situations when illumina-
tion and visibility may change suddenly and drastically. We are currently involved in a project whose
purpose is traffic monitoring by mobile cameras. Traffic monitoring, vehicle counting and event de-
tection are usually performed by video cameras mounted over roads in fixed positions. Traffic flow
is measured in these fixed points at different times, and statistical models are used to estimate traffic
between the points. An alternative solution is a mobile camera mounted on a vehicle participating in
the traffic. In this case, traffic data is measured in varying points at different times. The two methods
are complementary, as the mobile solution provides direct flow measurements between the fixed ob-
servation points, allowing to validate and improve the statistical models and to analyse the reasons of
congestion.

In our project, we process greyscale videos provided by a calibrated stereo rig mounted on a regular
bus carrying passengers to countryside settlements. Typical traffic images acquired by the mobile
cameras are shown in Fig. 2 and Fig. 3. Obtaining correct optical flow for such video data is difficult
for a number of reasons:

• Each camera continously adjusts itself so as to optimally use the current intensity range. This
can cause global intensity changes between consecutive frames.
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Figure 1: Top row: Two frames from the greyscale foggy sequence [16]. Bottom row: Optical flow magnitudes.

• Although the two cameras of a stereo rig are synchronised, the intensity adjustment is done
separately. This can cause global intensity difference between the two stereo images.

• Dynamic weather-related factors such as fog, sunshine, and clouds affect different parts of
image in different ways. This can cause local intensity changes between consecutive frames.
Intensity can also change locally due to shadow, shading, and shiny surfaces of cars.

In this paper, we address the problem of estimating the optical flow for each camera separately. Tradi-
tional optical flow methods based on the brightness constancy assumption fail when applied to video
data strongly contaminated by the above factors. Fig. 1 illustrates the aim of our study. The upper
row of the figure shows two frames from a foggy sequence from the Karlsruhe traffic video databa-
se [16]. The sequence is characterised by low and permanently changing visibility due to the intrinsic
dynamics of the fog. The bottom row shows the results of optical flow estimation by the classical
Horn-Schunck method [8] and the correlation-based method we propose in this paper.

Among numerous techniques used for motion estimation, the variational optical flow calculation
methods are currently the most accurate. The variational problem for optical flow calculation is
usually formulated as finding the displacement function u(x) that minimises a functional of the form

F(u) =

∫
Ω

(
E(x,u) + λS(∇x ⊗ u)

)
dx, (1)

where E(x,u), x = (x, y), u = (u, v), is a scalar function describing optical constraints, S a scalar
function of the dyadic product ∇x⊗u accounting for the smoothness of the flow, Ω the image domain,
and λ a parameter.

Denote by uα, vβ , α, β ∈ {x, y}, the spatial derivatives of the optical flow. Often, the smoothness



(regularisation) term is selected as

S =
1

2

∑
α

(
u2

α + v2
α

)
, (2)

then the solution of Eq. (1) is given by the Euler-Lagrange equations

∇uE = λ ∆u, (3)

where the Laplacian ∆ is applied to each component of u. These equations are solved numerically.
Most methods use an iterative solver that improves the optical flow estimate obtained in a previous
step as u → u′, repeating the procedure until a steady state is reached.

The classical Horn-Schunck [8] data term (energy function) is

EHS =
1

2

(
It + uIx + vIy

)2
=

1

2

(
It + u∇xI

)2
, (4)

where I(x, t) is the image brightness. The equation It +u∇xI = 0 is a first-order Taylor approxima-
tion of brightness constancy between two consecutive images in a sequence: I(x+u, t+1) = I(x, t),
thus minimising EHS approximates the brightness constancy assumption.

At each iteration of the Horn-Schunck method, the updated displacement vector u′ is calculated as

u′ = A−1
(
λū− It∇xI

)
, (5)

where the central sum

ū(x, y) = u(x− 1, y) + u(x, y − 1) + u(x + 1, y) + u(x, y + 1) (6)

and
Aαβ = IαIβ + 4λδαβ, (7)

where α, β ∈ {x, y} and δαβ is the Kronecker delta. Since Aαβ and It∇xI do not depend on u, they
can be pre-computed resulting in a very efficient numerical scheme. For colour images, the energy
term, the matrix A and the vector It∇xI are modified by taking the sum over the three channels;
except for this, the same algorithm is applied.

In an attempt to cope with changing illumination, Kim at al. [10] modify the optical flow constraint
by adding a linear term describing direct illumination p(x) and ambient light q(x):

It + u∇xI + pI + q = 0.

However, this introduces two additional variables resulting in a highly under-determined equation.
The method may tend to attribute intensity changes to illumination variations rather than to motion.
When the modified optical flow constraint is used in the variational framework, the smoothness term
needs setting two additional weights for p and q.

Another possibility is to include in the data term a function of image gradient which is known to be
less sensitive to illumination variations. Brox et al. [4] avoid linearisation and use, for two consecutive
frames I0 and I1, the energy term

E =
√

(I1 − I0)2 + γ(∇xI1 −∇xI0)2 + ε2,



where γ is a parameter, while
√

x2 + ε2, ε � 1, is a differentiable version of |x|. Using the L1 norm
instead of L2 makes the method more robust to noise and outliers. Zach et al. [18] also use L1, but
linearise I1 and apply a different approach to circumvent the non-differentiability of |x|.

Any differentiable function z
(
Ix/Iy

)
is invariant under any differentiable transformation of intensity

I ′ = f(I). In particular, the orientation of the gradient vector and the components of the unit gradient
vector are functions of the ratio Ix/Iy. In principle, they can be used to obtain illumination-insensitive
optical flow. However, this ratio is very noise-sensitive in image areas of low variation.

The above approaches are applicable to both greyscale and colour data. For colour data, Mileva et
al. [12] propose to use the photometric invariants of the dichromatic reflection model [15] in order
to make optical flow less sensitive to illumination changes, shadow and shading. They substitute the
original RGB values by the normalised RGB or the angles φ, θ of the spherical (conical) transforma-
tion. The normalised RGB values are defined as 1

N

(
R,G,B

)T , where N is either the arithmetic mean
R + G + B or the geometric mean 3

√
RGB. The angles of the spherical transformation are given by

θ = arctan

(
G

R

)
φ = arcsin

( √
R2 + G2

√
R2 + G2 + B2

)
The method is only applicable to colour data and under the assumption that the dichromatic reflection
model [15] is valid. In particular, it will not work for colour light. We need a robust method applicable
to greyscale images.

Of the discussed approaches, only the method by Mileva et al. [12] has been tested on data severely
contaminated by changing illumination conditions. Optical flow methods can be tested on the Mid-
dlebury database [2] which currently does not contain outdoor data with drastic illumination changes
we need for our purposes. In the rest of this paper, we present the proposed method and results of its
application to challenging data containing natural and artificial illumination effects.

2 Cross-correlation based variational optical flow

There are two basic options to achieve robustness against varying illumination: using illumination-
invariant features and applying robust data metric. The two options can be combined: for example,
Mileva et al. [12] use photometric invariants in a variational scheme with the robustified L1 norm.

The method we propose in this paper uses normalised cross-correlation in a small window W . We
apply cross-correlation to image intensity; however, it can be applied to any other image feature,
such as colour, or photometric invariants. It is well-known that cross-correlation is a robust tool for
comparing signal and image data. Cross-correlation is very efficient in block matching for numerous
applications such as tracking, video coding or Particle Image Velocimetry.

Addressing the general problem of multimodal image matching, Hermosillo et al. [7] consider differ-
ent statistical dissimilarity measures, including those based on correlation ratio and cross correlation.
They derive the Euler-Lagrange equations for the statistical criteria and propose a number of sophis-
ticated variational methods involving local probability density estimation using Parzen windows. The
regularisation functional introduced by Alvarez et al. [1] is used. The resulting non-linear minimi-



sation problem is solved by gradient descent. The method has been applied to elastic image match-
ing [7], motion compensation [17], and 3D scene flow estimation [14]. It is very general, but too
complex and slow for our purposes. In this section, we give an explicit, linearised iterative scheme
for variational optical flow based on cross-correlation, which is robust, simple and fast.

Consider two consecutive frames, I0 and I1. We use the standard smoothness term (2) but substitute
the Horn-Schunck data term (4) by

Ecor = −
∫

Ω

∫
W

I0(x + x′)I1(x + x′ + u(x + x′))dx′√∫
W

I2
0 (x + x′)dx′ ·

∫
W

I2
1 (x + x′ + u(x + x′))dx′

dx, (8)

where x′ = (x′, y′) are local coordinates in the window W and the cross-correlation is negated since
we minimise the functional.

Assuming a small window, after linearisation we obtain the following ‘first-order’ Euler-Lagrange
equations1:

1√∫
W

I2
0dx ·

∫
W

I2
1dx

(∫
W

I0I1dx∫
W

I2
1dx

∫
W

I1∇I1dx−
∫

W

I0∇I1dx

)
= λ ∆u, (9)

where for simplicity the local integration coordinates are changed to x and ∇ is ∇x. A mathemati-
cally correct derivation of these equations is quite involved; it will be given in a forthcoming journal
paper.

The above equations are nonlinear. Linearising ∆u in a usual way leads to an iterative solution which
is slow and imprecise. Fortunately, we can simplify the equations by further linearisation based on
the small-size domain of the window integrals. This is done in three steps:

• Apply the first-order Taylor approximation I0 ≈ I1 − u∇I1 − I1t.

• Assume that u is approximately constant within W . Combining this with the above approxi-
mation, simplify the integrals like∫

W

I0I1dx ≈
∫

W

I2
1dx− u

∫
W

∇I1dx−
∫

W

I1I1tdx.

• In Eq. (9), do not linearise
√∫

W
I2
0dx but assume that it is constant within iteration at a given

level of the Gaussian pyramid. When switching to another level, re-calculate the values.

The last step can be done because
√∫

W
I2
0dx essentially only modifies the weight of the smoothness

term. Assuming that its order of magnitude is similar to the other integrals and observing that λ � 1,
we conclude that this quantity has much less influence on the result.

After these steps, we obtain an iterative numerical solution similar to Eq. (5):

u′ = A−1b(ū), (10)

1The complete Euler-Lagrange equations contain an infinite series of integro-differential terms.



where

Aαβ =
∑
x∈W

I2
1 ·

∑
x∈W

I1αI1β −
∑
x∈W

I1I1α ·
∑
x∈W

I1I1β + 4λδαβ

∑
x∈W

I2
1 ·

√∑
x∈W

I2
1 ·

∑
x∈W

I2
0 , (11)

b(ū) = λ
∑
x∈W

I2
1 ·

√∑
x∈W

I2
1 ·

∑
x∈W

I2
0 · ū +

∑
x∈W

I1I1t ·
∑
x∈W

I1∇I1 −
∑
x∈W

I2
1 ·

∑
x∈W

I1t∇I1. (12)

Here α, β ∈ {x, y} as before, the integrals are replaced by sums, and ū is given by Eq. (6).

Comparing the above expressions to Eq. (5) and Eq. (7), we observe that the original method operates
with pointwise quantities, while the proposed method needs sums in small windows. Data arrays
with such sums can be pre-calculated in an easy and fast way using techniques similar to running
filters: when a sliding window moves to the next position, the previous sum is updated by adding the
entering data and subtracting the exiting data. Since most of the computation time is consumed by
the iterations, in practice the difference in processing speed between the Horn-Schunck method and
our method is negligible.

Standard techniques to cope with large displacements, including scale-space or Gaussian pyramids
and image warping, are applicable to the proposed method. When switching to a higher resolution
level, the parameters of the iteration are re-calculated after the warping.

3 Test results

Systematic testing of the proposed method is in progress. We are comparing our algorithm to the
state-of-the-art algorithms using our own data as well as the standard test data and benchmarks such
as the Middlebury database [2]. We have hours of calibrated stereo video recorded by a rig mounted
on a passenger bus travelling between countryside settlements. This data contains numerous examples
of difficult lighting conditions that cause severe problems to the standard optical flow techniques. At
the same time, we add artificial effects to the standard test data with ground truth available for the
original images.

For test data without drastic illumination changes, such the Middlebury database, we do not expect
our method to outperform the best current techniques in the precision of optical flow, although we do
expect it to be competitive in that as well. Tab. 1 presents preliminary results comparing the proposed
method to some state-of-the-art algorithms on the well-known synthetic Yosemite sequence with
clouds illustrated in Fig. 4. Average angular (AAE) errors are given for the precise algorithms by
Papenberg et al. [13] (2D regularisation), Bruhn et al. [5], Mémin-Pérez [11], and Alvarez et al. [1].
The figures are cited from [13] where quantitative results for other, less precise, methods are also
available.

Papenberg (2006) Bruhn (2005) Mémin (2002) Alvarez (2000) proposed
2.44◦ 4.17◦ 4.69◦ 5.53◦ 4.36◦

Table 1: Average angular errors for the Yosemite sequence with clouds.

The cross-correlation based optical flow can handle severe illumination changes and other effects that
influence visibility. Below, we show a few preliminary results demonstrating that cross-correlation is
more robust than the traditional L2 norm used by the Horn-Schunck and other algorithms. Since our
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Figure 2: Top row: Two consecutive frames of the greyscale road1 sequence. The brightness changes due to the
self-adjustment of the camera. Middle row: image 1 mapped onto image 2 by the optical flow. Bottom row: Same
part of the mapped images shown enlarged. Notice the distortions of the car and the house in the Horn-Schunck
result.

algorithm and the Horn-Schunck procedure use the same smoothness term and similar iterations, the
difference in results of the two methods is basically due to the difference in the data metric used.

The already mentioned Fig. 1 is a good illustration of robustness to fog which is a typical phenomenon
in real-world road data. One can observe that the standard algorithm fails almost completely, while
the proposed one is selective to the true motion of the cars despite the variations of the fog.

Images in Fig. 2 come from our own traffic data acquired by mobile cameras. The images are an
example of the situation when the overall brightness suddenly changes due to the self-adjustment of
the camera. We illustrate the difference between the two algorithms by mapping the first image onto
the second one using the optical flow obtained. If the flow is correct, the result of the mapping is close
to the second image. The proposed method is able to cope with the sudden brightness variation, while
the Horn-Schunck result is deteriorated in the area of the car and the house. For better visibility, a
part of the resulting images is displayed enlarged.

In another pair of images from our traffic data (see Fig. 3), we have added an artificial ‘shadow’ in
the centre of the first image. The ‘shadow’ has an elliptical shape, and its density decreases from the
centre outwards. Here again the standard algorithm is disturbed by the introduced effect, while our
result does not contain major defects. Two parts of the resulting images are shown enlarged. Observe
that the helmet is distorted by the standard algorithm, while our algorithm produces minor errors due
to disocclusion.
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Figure 3: Top row: Two consecutive frames of the greyscale road2 sequence with an artificial ‘shadow’ added in
the centre of image 1. Middle row: image 1 mapped onto image 2 by the optical flow. Bottom row: Characteristic
parts of the results shown enlarged.

Finally, Fig. 4 displays results for the synthetic Yosemite sequence where we again added a similar
‘shadow’ in the centre of the first image. The shadow is in the relatively dark part of the image,
and it is barely visible. The bottom row of the figure shows the optical flows obtained by the two
methods. The standard method is again visibly disturbed by the introduced effect, while our result is
much more correct. However, the dark, poorly textured part of the sky poses certain problem to our
algorithm, indicating that normalised cross-correlation, like most existing methods, may be sensitive
to such areas. Typical average angular error of our method for the Yosemite sequence with the
‘shadow’ added is 7− 8◦. This is comparable to the results without the ‘shadow’ given in Tab. 1.

4 Conclusion

We have presented a novel algorithm for variational optical flow based on cross-correlation. The
derivation of the linearised iterative numerical scheme assumes small size of the correlation window.
We have used the first-order Euler-Lagrange equations, but higher order equations can also be de-
rived and used. The obtained iterations are similar in structure to those of the classical Horn-Schunck
method, but they use window sums rather than pixel-wise properties. Fortunately, this does not signif-
icantly affect the speed of the algorithm since the sums can be pre-calculated for subsequent iterations
in an efficient way. The proposed method can be used with greyscale as well as colour images, and
standard techniques to handle large displacements are applicable.

We have qualitatively demonstrated that cross-correlation is significantly more robust to drastic changes
in illumination than the Horn-Schunck method. Currently, we are quantitatively comparing our
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Figure 4: Top row: Two consecutive frames of the synthetic Yosemite sequence with an artificial ‘shadow’ added
in the centre of image 1. Bottom row: Optical flow vectors.

method to the state-of-the-art robustified methods such as [4, 18] and, for colour data, [12]. We
are also testing the mean-shifted version of the normalised cross-correlation which is easily obtained
at no additional cost. At the same time, we are planning to test different data terms using the implicit
non-linear variational optical flow algorithm [6]. The algorithm can accommodate a large variety of
energy functions as it does not assume any particular analytical form of the function.
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