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Abstract

This work proposes an efficient approximation of a covariance based feature representation for track-
ing. In contrast to approximated similarity measurements between second order moments, such as
the Foerstner metric, we propose to approximate single distributions by specified sampling. We de-
rive an efficient and discriminative feature representation that allows to compute distances between
covariance-based descriptors on Euclidean space. This approximated representation fits perfectly to
the application of tracking, where efficient similarity measurement significantly controls the efficiency
and the real-time capability of the resulting approach. Furthermore, we highlight the advantages of
the proposed approximation for learning an object-specific representation during tracking. The ex-
perimental evaluation shows results on standard tracking videos and compares our derived approach
to state-of-the-art methods based on other covariance representations.

1 Introduction

Object tracking is an important task in many computer vision applications such as visual surveil-
lance, human computer interaction, traffic monitoring, augmented reality and sports analysis. The
handling of pose and appearance variations of the tracked object is a fundamental and challenging
task. In addition, many extrinsic influences such as cluttered background, multiple objects, variations
in illumination and moving cameras complicate the task. Robust visual tracking therefore depends
on discriminative appearance models and robust and efficient updates during tracking. A variety of
tracking algorithms have been proposed to overcome these difficulties.

Many efficient tracking methods are based on color histograms to describe the appearance of the
tracking target. Comaniciu et al. [5] proposed the mean-shift method, a non-parametric density gra-
dient estimator, where the image window most similar to the previous object representation, is found
iteratively by carrying out a kernel based search. Under large frame-to-frame displacements, where
the object kernel has no overlap with the previous position of the object, the mean-shift tracker tends
to get stuck in local minimas. To overcome this problem, probabilistic methods use the objects state
space to model the underlying dynamics of the tracking system. One popular approach is the particle
filter [16], also known as sequential Monte Carlo methods [1]. Particle filters can be interpreted as a
probabilistic search algorithm, where a set of particles, each describing one possible state, models the
posterior probability representing the current knowledge about the overall object state. In the com-
puter vision community particle filtering techniques have been widely applied to tracking problems
where it is also referred to as Condensation algorithm [8]. Maggio and Cavallaro [15] combined par-
ticle filters and the mean-shift approach into a two stage tracker, where the particles are shifted toward



the nearest maximum after the resampling step. Nevertheless, using only color histograms limits the
discrimantion power, which influences the tracking results significantly. Birchfield and Rangarajan [4]
proposed the concept of spatiograms, where spatial statistical information is given for each bin of a
generated histogram. Experiments showed improved tracking results compared to standard histogram
approaches. Wang et al. [24] introduced an adaptive appearance model based on joint spatial-color
Gaussian mixture models. To avoid the dependency on single feature cues, the integration of several
independent features increases the capability to react on critical tracking situations. Maggio et al. [15]
calculated several uncertainties for particle weights from different feature cues, color and edge his-
tograms, and used their proportions to dynamically adjust their influence onto the tracking result in
an on-line formulation. Recently, Badrinarayanan et al. [3] used a similar approach to estimate the
uncertainty for a color based particle filter tracker. Their multi-cue tracking approach combines a
novel randomized template tracker with a constant color model based particle filter by switching and
interacting between the different feature cues. A more direct way to incorporate several feature cues
for compact region based representation has been proposed by Tuzel et al. [20, 21]. Their proposed
covariance descriptor captures spatial and statistical as well as correlation relation between features,
while the dimensionality of the descriptor is kept small.

Furthermore, the capability to potentially adapt the object representation during the tracking process,
possibly against the actual background, is of vital interest for robust tracking [7, 2, 14]. Avidan [2]
considered tracking as a binary classification problem on pixel level. An ensemble of weak classifier
is trained on-line to distinguish between the object and the current background, while a subsequent
mean-shift procedure obtains the exact object localization. Grabner et al. [7] proposed on-line Ad-
aBoost for feature selection, where the object representation is trained on-line with respect to the
current background. In contrast to [2], their classification was applied to image patches instead of
pixels, combining various region-based feature descriptor for appearance and texture. Lim et al. [14]
introduced an efficient on-line algorithm for incrementally learning the eigenspace representation of
the tracked object, which facilitates the tracking task.

Our framework incorporates powerful covariance features for discriminative object representation and
the capability to efficiently update the object representations during tracking directly on Euclidean
space. Based on the approximated covariance representation describing both, texture and appear-
ance, we propose a probabilistic tracking system, where the tracked object is represented using five
sub-parts for additional robustness. Each sub-part is individually updated and evaluated using incre-
mental PCA for a eigenspace representation. The main contribution of our work is twofold. First, we
present the approximation for single covariance matrices using an efficient non-linear transform. By
applying a Cholesky factorization, a feature representation is obtained, which is defined on Euclidean
vector space and captures both, covariance and mean information. In contrast to typical operations
on Riemannian manifolds the resulting feature representation can be directly used in standard update
strategies and machine learning techniques. These computational advantages constitute the second
contribution.

The remainder of this paper is structured as follows: In Section 2 we discuss the related work to
covariance-based tracking. Section 3 briefly reviews the first and second order moments such as
the mean and the covariance representation, the efficient computation using integral structures and
describes the idea of the covariance approximation in detail. Section 4 highlights the application to
tracking, reviews the part based particle filtering, and discusses the subspace learning for appearance
modeling. In Section 5 experimental evaluations are given. Section 6 concludes our work and gives
an outlook on future work.



2 Related Work on Covariance Based Tracking

As proposed in [17], covariance descriptors for tracking and detection can be computed efficiently on
Cartesian space using an extension of single integral structures [23]. Due to the fact that covariance
matrices do not lie on Euclidean feature space, non-linear mappings to Riemannian manifolds [20] or
Lie algebra [17, 21] are used to obtain vector spaces in which the metrics for machine learning tech-
niques are defined. In [17] the Foerstner metric [6] is applied to approximated covariance similarity
measurements on the Riemannian manifold. Recently, in [21] Tuzel et al. treat tracking as a learn-
ing and detection problem, where the learning strategy estimates the affine motion using Lie algebra.
They adopted a regression model for learning and modeled the appearance using orientation his-
tograms. Yao and Odobez [25] proposed an extension of [20] for human tracking by detection, where
they use feature selection by extracting sub-parts of covariance matrices to speed up the computa-
tion. Additionally, this approach incorporates the mean within the rectangular regions for a rejection
step in the feature selection procedure. Li et al. [13] developed a tracking framework applying a log-
Euclidean Riemannian metric for on-line learning. They suggest to use a low-dimensional eigenspace
for on-line updates over time and propose a probabilistic formulation of likelihood function based on
the reconstruction error of the log-Euclidean eigenspace model. Contrary to [25, 13, 21], Tyagi and
Davis [22] applied an on-line filtering technique similar to Kalman filters [12] to model linear dynam-
ical systems on Riemannian manifolds.

3 Approximated Mean and Covariance Representation

In this section we highlight the extraction of our compact region-based features derived from first and
second order moments. As proposed in [19] discriminant covariance representations efficiently com-
bine raw pixel values such as appearance and texture descriptions and give feasible results in tracking
by detection applications [17, 20]. In contrast to these approaches, that are based on computationally
expensive processing steps on Riemannian manifolds, our idea relies on approximating the mean and
covariance representation on Euclidean vector space. In the following, we discuss the well studied
mean and covariance descriptors, the computation and the idea of our approximation.

3.1 Mean and Covariance Descriptors

Computing the covariance region descriptor from multiple information sources yields a straightfor-
ward technique for a low-dimensional feature representation. A covariance matrix contains the vari-
ance of each source channel in its diagonal elements and the off diagonal elements describe the corre-
lation values between the involved modalities. Considering an image / with the dimension w x h X d
any extracted covariance descriptor of an arbitrary rectangular size N x M results in a second order
sample matrix X, € R4
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where ;1 € R? is the sample mean vector:
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The feature vector I (x,y) corresponds to a set of extracted values at the specified position x and
y in the image /. These vectors are not restricted to normalized value ranges and include usually
appearance, texture or spatial attributes such as color, derivatives, coordinates, etc. Extracting the
covariance of an inhomogeneous area results in a strictly symmetric and positive semi-definite matrix
with constant dimensions that models the properties of the specified region. A restriction to non-
spatial attributes preserves the scale and rotation invariance because X, does not capture the ordering
of the incorporated attribute vector in the image grid. Due to zero-mean normalization in Equation 1
by subtraction the sample mean p the descriptor is invariant to photometric and illumination changes.

Tuzel et al. [19] applied integral images to efficiently compute the mean and the covariance descriptor
for rectangular regions. Using the law of total variation the intermediate computation of sums and
squared sums within the specified regions results in the final covariance matrix representation. Since
covariance matrices are symmetric, an overall number of d + d(d + 1)/2 integral images enables
the full construction. d integral images provide the information for the mean computation, while
the remaining summed area tables include the tensors of each permuted pair of the input channels.
Integral images offer to extract summed values in a given region in constant time, independently of
the region size. The detailed construction and the implementation issues can be found in [19].

3.2 Approximated Representation and Distance Computation on Euclidean Space

Similarity measurement computations between second order moments in high dimensions such as the
Foerstner distance suffer from expensive eigenvalue computations and manifold mappings. However,
in real-time applications such as tracking and large scale computations speed poses an important
issue. The Foerstner metric used in [6, 17] defines a symmetric distance approximation between raw
covariance matrices through log-manifold mappings and can be obtained by computing the sum of
squared logarithms of the generalized eigenvalues \;:

df(A,B) = \/Z In )\ (A, B), 3)

where A € R%? and B € R denote two given symmetric positive semi-definite matrices. The
definition of this metric guarantees symmetry and positivity similar to the properties of the Euclidean
distance. However, the complexity is increased due to the log-mappings of matrices to Lie space and
of matrix inverses computations.

In this work and contrary to the Foerstner metric, where the similiarity measurement is approximated,
we aim to approximate the individual first and second order moments, describing then Euclidean
vector space. The idea is based on choosing a representative set of samples of two given distributions
and to compute Euclidean distance for similarity. Moreover, the approximation of single covariance
matrices describing Euclidean space enables significant simplifications in further processing such as
the particle filtering and the update strategy.
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Figure 1: The non-linear transform of a given set of test vectors t; to the second coordinate system, representing
the properties of G(-). The resulting feature vector s captures both, mean and covariance information.

Julier et al. [9, 10] proposed the unscented transform (UT), which approximates a distribution by
specified sampling instead of approximating an arbitrary non-linear function by mapping to man-
ifolds. The UT provides an efficient estimator for probability distributions and was successfully
applied to unscented Kalman filtering [12], where it overcomes the drawbacks of Taylor expansions
truncated after the second order terms. In the d-dimensional case the UT relies on choosing a set of
2d + 1 specific vectors t;. In unscented Kalman filtering [11] these d-dimensional test vectors t; are
propagated through the non-linear system and give an accurate estimation of the posterior mean and
the covariance for any non-linearity. In contrast to Monte Carlo methods, where these test vectors are
selected randomly, the points deterministically sample the intersection of the unit sphere and the d-
dimensional Cartesian coordinate system together with the origin representing the mean. Given these
test vectors t;, a non-linear transform s; = G (t;) individually generates a new set of sample vectors s;
representing the properties of G(-) in a second coordinate system as shown in Figure 1. By computing
the statistics of these points s the original mean and covariance information about G/(-) up to second
order [10] is captured. Figure 1 illustrates the specified sampling of the test vectors for a 2D case, the
non-linear transform and depicts the construction of the Euclidean vector space representation.

According to the concept of [10] the non-linear transform G = \/aX, generates the set of 2d + 1
vectors s; as follows:

so=p  si=p+(VaX)i  sia=p— (VaX), 4

where ¢ = 1...d and (v/aX,); defines the i-th column of the square root matrix of X,. The scalar
a denotes a constant weighting factor for the elements in the covariance matrix and is set to o = 2
in case of Gaussian distribution [10]. Assuming a Gaussian distribution N (y, 3,.) with mean y and
covariance matrix X,, we extract a specified set of vectors s; providing the approximated sample
covariance X/ from the columns of matrix square root. Including 1 in the generated set of vectors as
a simple offset yields again the approximated original distribution N (y’, /) [10] according to

pp = Lis’ (5)
2d +1 = v
/ 1 = / nNT
Yor X, = ﬁZ(Si—M)(Si—M) : (6)



Due to symmetry and positive semi-definiteness of covariance matrices, the efficient Cholesky fac-
torization can be applied to decompose X, into LL”, where L is lower triangular. In principle any
method for matrix square root factorization can be used, however, the Cholesky decomposition pro-
vides a complexity of O(n?/3) with lowest number of operations for symmetric and semi-positive
definite matrices.

It is obvious that each of these generated vectors s; € S describes a d-dimensional Euclidean space,
therefore, L? distance computations can be applied for similarity measurements. We concatenate the
unweighted sample vectors to a resulting vector S € R%%+1 capturing the original mean x and
the covariance matrix X,. Following the exact directive in approximating various distribution, the
distance measurements between these vectors fulfill positiveness and symmetry. In the following
section we show how this approximated representation can be applied to tracking.

4 Application to Tracking

The derived approximated covariance representation in Euclidean vector space enables a plausible
and simple integration into the principle working step during tracking, like feature evaluation and on-
line update strategies. In order to demonstrate the use of our approximated covariance representation,
we briefly highlight these steps. First, we review the approach of particle filters for tracking, using
several sub-parts to increase robustness of tracking. Second, we additionally evaluated the uncertainty
of the particle set depending on the individual sub-parts, to dynamically weight the influence of
each sub-part for the tracking result. Third, we describe the features used for tracking. Finally,
the incremental PCA (iPCA) for efficient appearance representation is maintained for each sub-part.
While the integration of the uncertainty values incorporates knowledge about the surrounding, the
1PCA creates a optimal representation for each sub-part.

Figure 2: Subdivision of the tracking object. Individual representations for each sub-parts are maintained during
the tracking process.

4.1 Particle Filter for Efficient State Estimation

Particle filtering for tracking [8] provides a probabilistic framework, that maintains multiple hypothe-
ses of the current object state and has been proved to yield impressively robust tracking results. The
probability distribution of the hidden target state x; of the tracked object at time step ¢ is estimated
using a set of Np weighted particles {z!, w!} with i = 0... Np and associated measurements z/. Each
particle z} simulates the real hidden state of the the object. Using the dynamic model p(z%|z_;) and
the observation likelihood p(z!|xz!), the posterior distribution p(x;|z;) is approximated by the finite set
of particles:

Np i i i i
p(Xt’ZLt) ~ szx; where wz ~ wz_lp( t ’ it)p(i t?’ it_l)
— q(zi | 2y, 2)

(7



where S w! = 1is fulfilled and g(z | #i_,, 2) is the proposal distribution from which the particles
are drawn. Using the state transition model p(xi|zi ) as proposal distribution leads to the bootstrap
filter, where the weights are directly proportional to the observation model p(z¢|z!). Finally, the
posterior density p(x;|z;.;) is approximated by the weighted mean over the particle distribution, as
given in Equation 7. To avoid the degeneracy of the particle set, the resampling of the weights
is performed after each frame. (See [1] for more details.) To increase the robustness of tracking
and to handle the tracking procedure during occlusions, we divide the object representation into five
sub-parts. The partition into the five sub-parts is shown in Figure 2. Each sub-part is represented
by a reference feature vector S;,.r,j € {1..5}, and updated independently during tracking and the
importance of each part is adapted individually.

4.2 Uncertainty of Particle Sets

In the case of background clutter, occlusion, or ambiguities the distribution of the particles can become
unsubstantial, which leads to drifting, inaccurate tracking results or lost objects. From this it follows
that an important task is to measure the quality of a given weighted particle set {z?, w!}, to recognize
if the tracking of objects fail.

One method for measuring this uncertainty has been proposed by Maggio et al. [15], based on the
analysis of the covariance matrix 3, of the weighted particles {x%, w!}. The determinant of 3, de-
scribes the volume of the hyper-ellipse in the state space, given by the product of the eigenvalues
of ¥, defining the uncertainty Uo = det(X,) = HZ:I Ak, Where d is the dimensionality of the
state vector x'. Maggio et al. [15] calculated several uncertainties for particle weights from different
feature cues and used their proportions to dynamically adjust their influence onto the tracking result.
Recently, Badrinarayanan et al. [3] improved this measurement by using the ratio between the de-
terminants of >, and X5, where X depicts the covariance of the particles without weighting by the

likelihood {x%, NL,, } They pointed out that this increases the stability of the uncertainty measurement
regarding the fluctuations in the particle spread over time. They finally defined the uncertainty of a
particle set as U, = min {1.0, ZE—“J}, which is near 0 for a peaked particle distribution and going to

1 for an uncertain result. We indent to use this uncertainty measurement as an additional weighting
term for the influence of each part in the final state. The weighting for part 7 in frame ¢ is defined as

j78

: a0 L
wl = (1—min{1.0, EJ’ }), where Z;wi: 1. (8)
=
Finally, the observation likelihood for particle ¢ can be computed by
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4.3 Features for Tracking

Due to efficient computation of the covariance feature representation, we include several features to
capture spatial (x,y), color (R, G, B) and texture information (| L, (x, v)|, |I,(x,y)|, [Lex(z,y)|, [Lyy(x, y)|)

> 1 >
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Figure 3: a) Foreground probability after initialization. The dark rectangle (black) represents the foreground re-
gion, while the bright (yellow) rectangle also includes information about the background. b) Resulting foreground
probability map after several update steps during tracking.

similar to [17]. Additionally, the feature vector includes the foreground probability pr((x,y) €
Ol|l(z,y) = b) for each pixel. The rectangular selection of the object-of-interest includes back-
ground pixels, which have to be removed in a first step by classifying every pixel into foreground or
background.

The ratio between the non-normalized histograms of the object patch H, (b) and its surrounding
H, (b), including the object patch as well, H, (b) C H; (b), defines the probability of a pixel at
(x,y) to be part of the object O given by pr((x,y) € O|l(z,y) =b) = EZEZ?E, where I (z,y) is the
color of the pixel at position (x,y) and b is the assigned histogram bin.

The foreground/background histograms are iteratively updated during the tracking process. In the
case of static cameras foreground/background information can also be used to favor moving objects
for tracking. In Figure 3 the initialization process and resulting probabilities after several updates
are demonstrated. The dark rectangle (black) depicts the foreground region, while the bright (red)
rectangle also includes information about the background.

The resulting ten-dimensional feature vector f is defined by

f=[2y R G B |Lyl Lyl L@yl Lyl pey) ] 10)

4.4 Incremental Subspace Learning for Part-based Representation

The on-line adaption of the object representation is of vital interest during visual tracking. Although
covariance based features are in general robust against intensity changes, an on-line learning of a
subspace representation is applied in this work to further handle variations. We use the incremental
PCA method proposed by [18]. To obtain an initial model, a batch-based PCA is applied to a small
set of k training vectors S € R" sampled around the initialization position of an object, where n
denotes the vector dimension of the approximated feature representation according to n = d(2d +
1). Furthermore, this results in the initial eigenspace Uy, € R™™, where m depicts the number
of eigenvectors, coefficient matrix A4, € R™* and mean vector y, € R". With a new feature
vector arriving in the next frame the eigenspace representation gets updated, and the dimension of
the eigenspace is increased by one. To preserve the dimension of the subspace the least significant
eigenvector is discarded. The advantage of the method proposed by [18] is that previous samples
need not to be stored and the only required information are the coefficients and eigenvalues. For
tracking, the incremental subspace is updated independently for each of the five object parts. The
dimensionality of the eigenspace is determined during the initialization of the tracker, depending on



the eigenvalues returned from the subspace. In addition to the sensitivity to the background, achieved
by incorporating the uncertainty measurement, the eigenspaces create an optimal representation of
the object in each sub-part. The likelthood computation (Equation 9) changes to the reconstruction
error of the feature vector s given by

5
(et ) o exp(—"P) with rep, = Y wi |8, — )~ UUIS, )l A
=1

5 Experimental Evaluation

In order to demonstrate the tracking capability, our approaches is evaluated on several gray scale and
colored video sequences, mainly publicly available such as PETSO01, Vivid PETSO05 and Caviar. Dif-
ferent characteristics like challenging variations in lighting and camera positions, occlusions, similar
objects, scale, and moving cameras are included. To show the performance of our general approach
the configuration for all video scenarios is kept fixed. For all experiments we apply a particle filter
with 500 particles, representing a four-dimensional state space x; = |[x,y, f., fn] for scaling with
parameter f by keeping the aspect ratio of the object constant, and a random walk model with no
transition prediction. The feature vectors s used for the observation likelihood are given in Equa-
tion 10 and are reduced to a dimension of 8 for the experiments with gray scale sequences. Fore-
ground/background estimation is based on 10 bins per color channel.

In our first experiment we compare the part based tracking using the Euclidean vector space ap-
proximation of the covariance matrices (Section 3.2) to the method proposed by Porikli et al. [17].
Following [17], we apply an exhaustive search to extract the covariance representation on every pixel
location, followed by a subsequent mean-shift procedure to obtain the final tracking result. The update
strategy is performed on a Riemannian manifold, incorporating the last 20 frames, as proposed in [17].
Figure 4 shows the obtained results of our proposed part-based tracker using Euclidean approxima-
tion of the covariance matrices (dashed rectangles) compared to the method in [17] (solid rectangles).
Obviously, the global object description suggested in [17] is more sensitive to distractions from the
background, especially homogeneous regions, or similar objects. One can see that the approximation
does not deteriorate the tracking performance. Rather the sub-part representation, together with the
dynamically adjustment of the rejection probability for each sub-part over time, allows our tracker to
handle critical situations during mutual occlusions and overlaps.

As a second experiment, we present the improved results obtained by using the eigenspace representa-
tion (Section 4.4) for each sub-part. Figure 5 depicts several examples from publicly available scenes.
The integration of the incremental PCA in the object representation results in more stable results,
concerning scale changes and drifting over time. Additionally, the results show the capability of our
approximated covariance representation for standard state-of-the-art machine learning techniques.

6 Conclusions

In this paper we have demonstrated a powerful method for approximation of first and second order
moments such as mean vectors and covariance matrices for the application of tracking. Based on effi-
cient integral structures for the covariance matrix computation, we applied the Cholesky factorization
to obtain an approximated feature representation with integrated mean information. Due to a Eu-
clidean vector space representation of the approximation, we have demonstrated that costly similarity



Figure 4: Visual tracking results of the covariance descriptor proposed in [17] (solid) compared to our part based
tracker using Euclidean approximation of covariance matrices (dashed).

measurements on manifolds can be replaced by simple distance computations in higher dimensional
Euclidean space. Furthermore, the covariance approximation enables processing steps such as incre-
mental sub-space model update strategies directly on Euclidean space. In the experimental section we
compared our approach to common covariance based tracking methods and demonstrated robustness
by incorporating incremental PCA in the object representation. Future work will include an improved
on-line learning and update strategy and an integrated feature selection procedure using binary mask-
ing of the approximated vector representation. A full C/C++ implementation will further improve
the real-time performance of currently 6-8 fps in Matlab, using mex-files for feature computation and
representation.
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