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Abstract
Acquiring a highly specific target representation is a major challenge in the task of visual object
tracking. High specificity substantially lowers the inherent ambiguity of the data association task
and leads to improved tracking accuracy in presence of clutter. In this paper we propose a method
generating a specific representation of the image structure for a tracked target in an hierarchically
organized statistical process. Starting with simple and generic low-level local features (oriented edge
segments) increasingly specific feature combinations are generated based on a temporal and spatial
statistical analysis. The analysis delineates feature combinations with a frequent joint occurrence in
the spatio-temporal domain. The detected relatively few specific combinations can efficiently guide a
spatio-temporal association step of coherently moving image regions, and delineate the tracked target
reliably. The proposed approach is demonstrated and evaluated in several experiments.

1 Introduction

Object representations which are (i) specific and (ii) at the same time invariant with respect to pho-
tometric, view and pose changes are essential components of reliable visual object recognition and
tracking systems. Representations capturing the specific structure of an image object can be con-
ceived, nevertheless, structural variations are hard to represent using models based on image statistics.

In case of tracking, articulation, targets undergoing substantial pose variations and partial occlusions
might lead to failures. Part-based approaches [2, 16] avoid some of these problems by decomposing
variable structure into simpler parts, but often lack the flexibility to represent complex deformable
structures. They either rely on an a priori model or the part-based model is too general (for example
defined by a uniform grid of blocks).

Hierarchical systems ensure an efficient way to represent exponential variability present in the visual
data. Recent works [12, 8] in visual object recognition demonstrate that hierarchical grouping of
simple features generates a finite set of increasingly specific groups, able to represent the structure
of many object categories in a compact form. In this paper, this concept is applied in the field of
tracking.
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We propose a tracking approach, which (i) builds a target-specific part-based model on concepts
of compositionality [12] and (ii) employs the generated model for tracking. The part-based model
is built on-line by hierarchically grouping simple features (oriented edge segments) in a bottom-up
process and updated in overlapping space-time volumes (several frames of a video sequence). As the
model is target-specific and no prior knowledge is integrated, it is possible to employ this approach to
track any arbitrary moving foreground object. The hierarchy of the model is suitable during the top-
down tracking process, because the association of big groups of features at the top of the hierarchy
is less ambiguous than the association of individual, simple features. The estimated motion models,
resulting out of the association of the top level, are used to guide the motion estimation process for
smaller groups of features in the levels below – resulting in a spatially dense representation of the
moving target object.

The paper is organized as follows. Section 2 introduces related work. Section 3 gives an overview of
our approach and Section 4 explains the algorithmic steps generating the hierarchical representation.
Section 5 describes the association step enabling tracking. In Section 6 experiments prove the concept
of our approach. Section 7 discusses important and interesting parts of the presented approach. In
Section 8 we draw conclusions.

2 Related work

Edge segments are attractive low-level features offering a high degree of geometric and photometric
invariance and encompassing a rich pool for building part-based models. Early works, as [11] by
Gao, employ pre-designed rules to partition and group edge segments into more complex and distinc-
tive entities. Partially driven by significant advances in visual object recognition, recent frameworks
propose statistical, learning-based methodologies to group simple features.

In the field of object recognition, the idea to group simple features into more distinctive combinations
of features is popular to form a vocabulary to distinguish between different categories of objects.
Opelt et al. [15] employ object boundary fragments to detect multiple object classes in presence of
clutter and partial occlusions. Boosting is used to extract and select class-discriminative boundary
fragments. A novel multilevel visual representation called “hyperfeatures” is introduced by Agarwal
and Triggs in [3]. They iteratively organize local sets of image descriptors into more complex and
spatially sparse parts. This results in a system able to localize several object categories. Crandall
et al. [6] propose a recognition approach where appearance models of parts and spatial relations
between parts are simultaneously estimated and used to localize objects. Bouchard et al. present
in [5] a hierarchical part-based description encoding geometry and appearance of object parts. The
learned part-based models vote in a bottom-up manner for possible object locations.

In the field of object tracking, hierarchical representations of the structure of spatially extended targets
have not been investigated in great detail yet. Ommer et al. [14] present an approach where simple
interest points are tracked in a frame-by-frame manner. Interest points as simplest parts are repre-
sented by local descriptors, which are used to analyze spatio-temporal relationships between parts to
learn compositional structured object models. In comparison to our work, Ommer et al. do not use
a hierarchical representation and propagate hypothesized part compositions over consecutive frames.
In this paper similar concepts as presented by Fidler et al. [8, 7] are applied to hierarchically group
and organize spatio-temporally aggregated low-level features. The aim is to generate compositions of
low-level features, which can be associated and tracked in an unambiguous manner. In comparison to
the related work in the object recognition field, our approach does not need a training set or any other
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Figure 1: Concept of our approach.

prior knowledge.

3 Overview of our approach

This approach starts with extracting simple oriented edge segments from a sequence of images. Then
local spatial configurations of multiple oriented edge segments – denoted further on as combinations
– are built. This combinations encode the local structure of objects (i.e. rigid parts of an articulated
object). The aim of this approach is to select a set of temporally invariant combinations by statistical
analysis, and to reliably associate them to form trajectories. During the association process the sta-
bility (temporally invariant structure) and the high specificity (low occurrence frequency) properties
of the selected combinations are exploited. As can be seen in Figure 1 the hierarchical description
is built in a bottom-up process without any a priori knowledge, while tracking (motion estimation) is
done in a top-down manner.

4 Building the hierarchical structural representation

The input of the bottom-up process are oriented edge segments detected in the current space-time
volume of a video sequence (see Figure 1). A space-time volume are F consecutive frames of a video
sequence – like a sliding window in time. Beginning at level 1 up to a desired top level, combinations
of local features are built by grouping edge segments together in combinations of increasing size.
Temporal and spatial statistics are employed to reduce the number of all possible edge segment com-
binations in a level to a set of stable combinations. The stable combinations of level L i represent the
basis for the combinations of the next level Li+1. Each stable combination of level Li is extended by
an additional segment selected out of a local neighborhood and the statistical analysis (temporal and
spatial) is repeated to produce the stable combinations for level Li+1. This incremental building pro-
cess is carried out until a desired top level is reached, where only few, specific combinations remain,
e.g. level 3 in Figure 1, or no more stable combinations are found.

4.1 Extraction of edge segments

In this approach the local structure of foreground objects and background is described by oriented
edge segments as in [8]. Oriented edges characterize the local geometry in a spatially localized and
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Figure 2: Application of oriented filter bank on one frame of sequence 3 (PETS 2001 dataset). (a) Extracted edge
segments (red) and grid of local neighborhoods (green). (b) Responses of oriented filter bank (blue lines visualize
orientations).

more selective manner than local histograms. By using a filter bank consisting of oriented Gabor
filters (8 orientations in 0◦-180◦, σ = 0.7) local edge segments are detected.

Each frame of the current space-time volume is filtered with the oriented filter bank and for each
orientation the magnitude of filter responses (without sign) is calculated. To extract edge segments,
each image is divided into a set of non-overlapping rectangular neighborhoods of a size D. The
size of the rectangular neighborhoods is small enough to capture important shape details such as the
shoulder silhouette of a human. In each rectangular neighborhood the locally dominant orientation
is determined by analyzing all filter responses within the neighborhood and finding the orientation
with the maximum response. If a local maximum response is smaller than Tm it is considered as
noise and ignored. For the experiments in this paper we used the values Tm=15 and D=10 pixels, the
latter being approximately 1

10
of the foreground object’s height. Figure 2 shows an example for the

extraction of edge segments and the responses of the oriented filter bank.

4.2 Building Levels of hierarchy

Each level Li of the hierarchical structural representation contains a set of MLi
stable combinations

C = {c1, c2, . . . , cM} consisting of i + 1 edge segments. Each edge segment sl represents one of O
possible edge orientations S = {s1, s2, . . . , sO}. As we aim to avoid exponential complexity (ON for
N levels), the combinations of edge segments are built as follows.

Each combination of edge segments ck in level Li consists of i segments forming the primary part
pprim and one segment representing the marginal part pmar. For expample in level L2 the primary part
pprim consists of a set of segments {s1, s2} and the marginal part pmar of the segment s5. The primary
parts of the combinations in level Li are the stable combinations from the previous level Li−1 (level
L1 is an exception of this property). So the number of possible combinations of edge segments for
level Li is MLi−1

· O.



A combination is uniquely defined by the orientation of its edge segments e.g. {s1, s2, s5, s7}. Each
combination can occur several times in a frame – denoted further on as combination occurrence.

4.2.1 Level i

For each frame in the current space-time volume all possible combinations of pprim and pmar are
enumerated. This is done within local windows B consisting of multiple local neighborhoods D. In
order to avoid prohibitive complexity due to the combinatorial nature of the enumeration task, the size
of the local analysis window B is defined to be small at lower levels of the hierarchy and increased at
higher levels (see Table 2).

The local window B is centered over each stable combination of level Li−1, representing the primary
part pprim of the new combination. Then all possible combinations of pprim with an additional segment
out of B representing pmar are formed. Every combination occurrence has to be unique, meaning that
no couple of combinations is allowed to contain the same edge segments, they have to differ at least
by one segment.

4.2.2 Level 1

To process of building the combinations for the bottom level of the hierarchy differs from the other
levels as there are no stable configurations from a previous level. The local analysis window B is slid
over all local neighborhoods in all frames starting in the top left corner with a step size equal to D.
Within the sliding window at the actual position, all possible combinations are built. As there is no
stable combination from a previous level to represent the primary part it is necessary to come up with
a different assignment rule. The combinations of the first level consist of two edge segments, where
the segment with the lower index simply defines pprim (e.g. s2) and the segment with the higher index
becomes pmar (e.g. s5).

4.3 Statistical analysis

After all possible combination occurrences of a level are found, temporal and spatial statistics are
applied to select the stable combinations.

4.3.1 Temporal statistics

The task of temporal statistics is to estimate the density of the occurrence of each combination within
the current space-time volume by binning and to retain most frequently occurring combinations.

The density of the occurrence of each combination is captured with the help of a 3D histogram H ,
where the histogram is spanned by the primary part indices pprim (unique index assigned by algo-
rithm), the marginal part indices pmar (orientation index) and the number of frames of the space-time
volume. Combinations which appear in a certain percentage of frames, defined by threshold Tf , are
retained. The outcome of temporal statistics is a set of temporally stable combinations. Temporal
statistics do not consider the spatial arrangement of the edge segments in the image space, this is done
by spatial statistics (see following paragraph).
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Figure 3: Concept of spatial statistics. At the top different spatial edge segment arrangements of a combination are
shown. In the bottom the creation of the spatial distribution (relative to the centered primary part) is visualized.

Table 1: The numerical data of the combinations of bar diagram (b) in Figure 4 (third and forth column) and the
number of all possible combinations (second column).

Level All combinations After temporal statistics After spatial statistics
1 36 23 21
2 288 129 102
3 2304 325 243
4 18432 399 257

4.3.2 Spatial statistics

The combinations remaining after temporal statistics form the input for spatial statistics. Spatial
statistics focus on analyzing the spatial arrangement of the edge segments. One could think of the
spatial statistics as a stricter selection of combinations in comparison to temporal statistics. Figure 3
visualizes the creation of a co-occurrence histogram of edge segments, which encodes the spatial
relationships. For each temporally stable combination all occurrences are analyzed. The primary part
pprim of the combination is centered at (0, 0) in a local coordinate system and the spatial distribution
of the corresponding marginal parts pmar – relative to the primary part pprim – is built in form of a
two-dimensional histogram.

The obtained set of spatial distributions is used to select combinations with frequently occurring spa-
tial edge configurations within the F frames of the current space-time volume. Mean shift mode
seeking is employed on each distribution to locate the P most significant modes. The edge configu-
rations corresponding to this peaks survive spatial statistics and the others are eliminated. If one of
the modes is smaller than threshold Tp it is ignored. The result after spatial statistics is a set of stable
combinations in space and time. A stable combination is now uniquely defined by the orientation of
its edge segments and their spatial arrangement.

Figure 4 shows two bar diagrams, where (b) displays the effect of temporal and spatial statistics on the
number of stable combinations and (c) shows the effect of the statistics on the occurrences of those
combinations. The numbers of the bar diagrams are from the statistics of a space-time volume of
sequence 3 (see experiments Section 6). Table 1 complements the information from Figure 4(b) with
the number of all possible combinations. For all experiments in Section 6 the parameters described in
this section are set to the values of Table 2.
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Figure 4: An example of the numerical results of temporal and spatial statistics. (a) Extracted edge segments. (b)
Number of stable combinations after temporal (blue, dark) and spatial statistics (yellow, bright). (c) Occurrences
of stable combinations after temporal (blue, dark) and spatial statistics (yellow, bright).

Table 2: Values of parameters for experimental results for each level.
Level D B Tf P

1 10 3 · D × 3 · D 70% 4
2 10 3 · D × 3 · D 70% 4
3 10 5 · D × 5 · D 50% 4
4 10 5 · D × 5 · D 50% 4

5 Tracking using the built hierarchy

The hierarchical representation is used in a top-down manner to estimate the motion models of fore-
ground objects. While going up in the hierarchy the combinations of edge segments become more
distinctive and in the best case the combinations appear only once in an image. The idea behind the
top-down process is that the association of combinations at the top level is less ambiguous and can
be used to guide the association step of combinations at lower levels (with less specificity). Using the
combinations of all levels of the hierarchy results in a dense structural description of the foreground
objects. Foreground objects are delineated by grouping stable combinations, which obey the same
motion model.

The proposed top-down tracking consists of three steps: (1) temporal association between the obtained
combinations using robust statistical estimation, (2) grouping of combinations following the same
motion model (see Section 5.1) and (3) association of trajectory segments in overlapping space-time
volumes (see Section 5.2).

5.1 Temporal association

Reliable association of combinations requires that the combinations are stable and highly specific.
The previously described temporal and spatial statistics capture combinations which occur in multiple
frames of the analyzed space-time volume. Combinations in the higher levels of the hierarchy are
more specific and occur less frequently. The estimation task of the underlying motion models of the
combinations can be solved as a regression problem. To keep the complexity of the motion model
estimation low, linear motion models are assumed within the analyzed space-time volume (typically
20 frames).

The RANSAC algorithm [9] is used to carry out the regression task. Estimation is started at the top



Figure 5: Space-time plot showing all stable combinations of edge segments describing a moving foreground object
(pedestrian with suitcase) and obeying the same motion model estimated by robust regression.

level of the hierarchy, where combinations are the most specific and their spatio-temporal distribution
best exhibits the underlying linear structure. Typically, despite of the high specificity of combina-
tions, the space-time distribution of a given combination contains multiple structures, therefore the
regression task is challenging.

For each combination at the top level the best fitting linear motion model is estimated. The curve
of the estimated motion model encodes direction and speed of the movement in the image space.
Motion vector estimates are accumulated, in a similar manner to layered motion representations [4],
in a two-dimensional vector space spanned by velocity components along x and y. Mode seeking is
performed in the velocity space to find the underlying trends – peaks defined by velocity components
of frequently occurring motion models. Usually there is a mode around the origin of the velocity
space encompassing combinations belonging to the stationary background (no movement). Other
modes represent moving foreground objects.

Since the number of stable combinations at the top level is low, the obtained set of coherently moving
combinations defines only a spatially sparse object description. To obtain a spatially more dense
description, RANSAC estimation is also performed at lower levels of the hierarchy. As the estimation
of motion models at lower levels is considerably more ambiguous, the estimation is guided by the
motion models estimated at the top level. If motion models of combinations in lower levels do not
belong to any of the previously detected peaks in the velocity space they are discarded. In this way,
RANSAC is able to recover motion paths of less stable and less distinctive combinations at lower
levels of the hierarchy and to provide a dense structural description of foreground objects (see example
in Figure 5).

As a given stable combination is not necessarily present in every frame, missing instances of com-
binations are generated by interpolating the location of each segment using the underlying motion
model. Due to the interpolation step, the tracked object is described in each frame by the same num-
ber of stable combinations and spatial grouping can be carried out for each frame. Spatial delineation
is performed by computing the convex hull of centroid locations of segments belonging to stable
combinations (see results in experiment Section 6).



Figure 6: Illustration depicting the incremental space-time object tracking. Different colors indicate distinct stable
combinations defining object trajectory segments in consecutive overlapping space-time volumes.

5.2 Incremental space-time processing

As the shape of a tracked target can change, usually varying sets of stable combinations represent the
target structure at different time instances. Therefore, the hierarchical description is independently
rebuilt in an incremental manner within overlapping space-time volumes (see Figure 6). The size of
the space-time volume (number of frames) and the overlap highly depends on the video sequence.
Clearly, the space-time volume will be small (e.g. 10 frames) if the object is undergoing fast motion
and appearance changes.

Assuming kinematic smoothness of target motion, trajectory segments obtained for individual vol-
umes are associated using the estimated motion models and spatial proximity. Mean shift mode
seeking is applied to the distribution of the velocity space to associate the motion models from the
previous space-time volume to the models in the current volume. As the motion model of a fore-
ground object is not going to change dramatically between the overlapping space-time volumes the
association task is easily solved.

6 Experiments

The idea behind the following experiments is to prove the concept of our approach and to qualitatively
evaluate it. We performed tracking experiments on three publicly available video sequences to prove
our concept and qualitatively evaluate the performance of our approach. Video sequence 1 is part of
the Vivid Tracking Evaluation Testbed [13], sequence 2 is taken from the CAVIAR dataset [10] and
sequence 3 is a video of the PETS 2001 dataset [1].

Sequence 1 shows multiple moving cars and the scene is viewed by a moving aerial camera. In this
experiment a moving car is segmented and tracked as a foreground object. The obtained convex hull –
spanned by segments belonging to stable combinations – covers image regions, where spatio-temporal
stability was found (see Figure 7). Segment combinations on the moving background are detected as
well and form a spatially separated structure (not shown), since they follow a different motion model
than the car. Figure 7 shows the delineated and tracked car along with its trajectory.

Sequence 2 shows a pedestrian tracking example (see Figure 8). The line pattern of the ground plane
tiling generates combinations, which are at lower levels of the hierarchy similar to the combinations
found at the person. However, at higher levels of the hierarchy certain feature combinations occur only



Figure 7: Convex hull and trajectory of a tracked object in sequence 1 (from the VIVID dataset).

Frame 1057 Frame 1076 Frame 1104 Frame 1165

Figure 8: Convex hull of the tracked object in sequence 2 (from the CAVIAR dataset).

for the person, rendering the association task feasible. The coherently moving parts of the person are
delineated in an unambiguous manner. Figure 8 shows some frames of the sequence with the tracking
results.

Sequence 3 depicts another car tracking example (see Figure 9). Target-specific stable combinations
are found despite of the slow velocity of the vehicle. The car is tracked in a stable manner, as shown
in Figure 9.

Frame 33 Frame 53 Frame 73 Frame 102

Figure 9: Convex hull of tracked object of sequence 3 (from the PETS 2001 dataset).



7 Discussion

As the proposed representation for tracking employs no prior model, it can be applied to track arbitrary
targets, rigid and non-rigid objects. In absence of a prior model, feature selection for the tracking task
is completely data-driven and unbiased, implying that all detected features and their combinations –
when stable and following a common motion model – are used to estimate the structure and motion
of a target.

The presented hierarchical, part-based model is able to handle appearance changes because it is up-
dated in an iterative manner. In overlapping space-time volumes the model is rebuilt and updated
to any changes in the object. It is assumed that the appearance of the target object does not change
abruptly or that the changes are not in every part of the object, meaning that it is possible to identify
the object over time.

It is not necessary that all combinations (parts) of an object are visible in every frame. The positions
of missing combinations can be interpolated with the help of the underlying motion models. Even
full occlusions can be handled if they appear only in a part of the corresponding space-time volume.

The success of this approach is dependent on its parameters. It is important that the size D of the
rectangular neighborhoods is small enough to capture important details of the structure of the object.
If D is too small the complexity of the approach is unnecessarily increased. The window size B
directly effects how many combinations can be found and also how big combinations can become.
This parameter should be set carefully as it also highly effects the complexity. The size of the space-
time volume F (number of frames) is crucial. It should be high enough to allow a robust estimation
of the motion models and on the other hand it should be small enough to allow a quick update of
the model (appearance changes). The thresholds Tf and Tp influence the outcome of the bottom-up
process – the model. Tf decides which combinations are sorted out in the temporal statistics. With
this it is the first attempt to reduce time complexity. It is important that this threshold is not too high
for the top level of the hierarchy, because big combinations are not likely to appear in almost every
frame. Tp decides if one of the P most frequent spatial arrangements is not frequent enough, which
can lead to the elimination of important combinations if the threshold is set to high.

The presented approach has problems with repetitive patterns in the background (e.g. road markings).
In such sequences it is possible that RANSAC finds motion models in the static background that are
similar to the foreground, even though there is no movement. This problem results in background
combinations becoming identified as part of moving foreground objects. Another obvious problem is
image noise, which leads to inconsistent edge extraction results.

8 Conclusion

In this paper we introduced a tracking approach motivated by the concept of compositionality, where
specific combinations of multiple simple features are formed in a hierarchical analysis framework.
The set of detected specific parts is partitioned spatially to delineate coherently moving image re-
gions which form the tracked targets. The approach is able to cope with temporally smooth structural
variations by performing the search for specific combinations in consecutive spatio-temporal vol-
umes. Combinations are formed in a fully data-driven manner while integrating information from all
available low-level features representing slowly varying target structure. The framework is applicable
to multiple interacting targets and the presented initial grouping and tracking results show promising



performance. Future plans involve the incorporation of rotationally invariant low level descriptions in
order to enable the system to segment multiple coherently moving regions of articulated objects.
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