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Abstract
This paper describes a visual landmark detection and description system for mobile robotic environ-
ment mapping. At the detection stage, the paper employs a perceptual–based hierarchical algorithm
which has been previously used for segmentation of natural images. At the description stage, visual
landmarks are characterized by a kernel–based representation and by the set of dominant points ex-
tracted from their outer boundaries. These dominant points allow to represent the landmark region
by a set of stable points which can be located –by its position and uncertainty– on the 3D real world.
Although all system modules are briefly described and evaluated, this paper is specifically focused on
the dominant point detector.

1 Introduction

Reliable navigation is an essential component of an autonomous mobile robot which typically implies
representation of the information perceived by external sensors into an internal navigation map. It is
interesting that this map can be built with distinguished natural landmarks that the robot acquires from
the environment without human supervision. In this framework, landmarks can be defined as ”distinct
features that a vehicle can recognize reliably from its sensor observations” [9]. Recognizable land-
marks are essential since they will be used as reference marks to identify world locations. To detect
these landmarks, vision systems have been considered in this last years as an attractive alternative to
the active ranging devices [18]. These systems are passive and of high resolution, providing a huge
amount of features (color, texture or shape) that can permit to disambiguate landmarks for subsequent
data association purposes.

This paper describes a visual landmark detection and description system for environment mapping. In
this system, distinguished regions are extracted from the input image by a perception–based grouping
mechanism. The central item of the perceptual grouping approach for image segmentation is an irreg-
ular pyramid: the Bounded Irregular Pyramid (BIP) [11, 10]. However, the BIP presents an inherent
problem which can damage its application on this framework: it provides an image segmentation
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which varies when this image is shifted slightly [11]. To avoid this shift–variance problem, the BIP
has been modified, changing the decimation process used to build its internal structure. From the
segmentation regions provided by this perceptual–based grouping algorithm, the set of image regions
which satisfies certain criteria is choosen. These visual features are then characterized by a kernel–
based representation and by the set of dominant points detected over its outer contour. This paper is
mainly focused on this last issue.

The rest of the paper is organized as follows: after presenting an overview of the proposed system in
Section 2, Section 3 describes the employed dominant point detector. Experimental results in Section
4 show the performance of the different system modules, providing comparative studies where they
have been evaluated. Finally, in Section 5, we draw the main conclusions and outline future research
directions.

2 Overview of the Proposed System

The visual landmark detection and description system consists of three modules or stages. First, a hi-
erarchical perceptual grouping algorithm is applied to perform a domain–independent segmentation
of the image pixels into regions. Thus, although the final obtained regions do not always correspond
to the natural image objects, it provides a mid–level segmentation which is more coherent with the
human–based image decomposition. Then, the set of regions which satisfies certain rules are selected
as landmarks. These rules do not depend on the environment or application, and they impose to the
obtained landmarks properties like good contour closure and continuity or high contrast with respect
to its surrounding background [10]. Besides, the shape of these regions is adapted to real items of
the scene. Therefore, continuous geometric transformations preserve topology pixels from a single
connected item are transformed to a single connected item. Thus, after a geometric change locally
approximated by an affine transform, homography or even continuous non-linear warping, a percep-
tually homogeneous region will be in the transformed set of regions (see Fig. 1). Obtained landmarks
are characterized by the 3D position of a set of dominant points detected over its outer contour. This
allows to locate the region on the 3D real world. Finally, a kernel–based representation [4] is em-
ployed to describe its internal colour distribution.

The modules involved in the solution of the visual landmark detection and description system are
biefly described below:

• Hierarchical perceptual grouping algorithm. The hierarchical perceptual grouping algorithm
performs the segmentation of the input image using two consecutive stages. The first stage
employs a colour distance to group the image pixels into a set of regions whose spatial distri-
bution is physically representative of the image content. Then, the second stage groups the set
of homogeneous regions into a smaller set of regions taking into account not only the internal
visual coherence of the obtained regions but also the external relationships among them. This
scheme has been successfully employed to segment natural images (see [10] for further details).
In this approach, the segmentation is accomplished using an irregular pyramid: the Bounded
Irregular Pyramid (BIP). The BIP is a mixture of regular and irregular pyramids,i.e. the BIP
combines a regular structure with an irregular simple graph. The regular decimation is applied
in the homogeneous parts of the image, meanwhile the heterogeneous parts are decimated using
a classical irregular process [11]. Currently, the structure of the BIP has been modified in order
to improve the mixture of the regular and irregular decimation processes. This new pyramid



Figure 1: Regions generated by the proposed detector on two images taken from different viewpoints. Regions are
represented by ellipses which have their same first and second moments. Then, ellipses show the original detection
size.

allows to merge regular and irregular pyramid nodes, linking them to the same parent node.
Table 1 presents the obtained results from the evaluation of several decimation schemes using
the shift–variance (SV ) test [11]. It must be noted that the smaller the value of this parameter
(SV ), the better the segmentation result should be. Experimental results show that the modified
BIP decimation scheme is robust against slightly shiftings of the input image.

The hierarchical perceptual grouping approach provides a partition of the input image into a set
of regions. Among these regions, the approach selects those which satisfy certain conditions.
Thus, selected regions cannot be located at the image border in order to avoid errors due to
partial occlusions. They must also exhibit a relatively high color contrast with respect to its
surrounding regions. Specifically, the conditions imposed to be a landmark are the following:

– The bounding box of a selected region must not be located in an image border. The
bounding box of a region is the minimum box which encloses it.

– The contrast between the color of a landmark and its surrounding regions will be higher
than a threshold value.

• Landmark appearance description. Vision can be useful to avoid data association failures al-
lowing landmarks to be characterized by a robust descriptor, i.e. a descriptor which will be
invariant to illumination and viewpoint changes. In our case, this descriptor is estimated from
an image region whose shape changes as a function of the image acquisition viewpoint. This

MIS [13] D3P [6] MIES [5] BIP [11] Modified BIP
SVmin 39.9 31.8 23.7 25.6 19.5
SVave 59.8 49.1 44.1 73.8 43.7
SVmax 101.1 75.3 77.2 145.0 73.2

Table 1: Shift Variance values for different decimation processes. Average values have been obtained from 30 color
images from Waterloo and Coil 100 databases (All these images have been resized to 128x128 pixels size).



will increase the robustness of the description. In this work, we assume that colour distribution
can provide an efficient feature for region description as it is robust to partial occlusion, scal-
ing and region deformation. It is also relatively stable under rotation in depth in certain cases.
Besides, colour histograms can be easily quantized into a small number of bins to satisfy the
low–computational cost imposed by fast processing. In order to take into account the spatial
information, which could be useful to distinguish certain cases, the regions can be masked with
a kernel in the spatial domain [4]. Thus, the appearance of the region is described by a set of
scalar features, {si}i=1...N which will be obtained from the image region defined by the visual
landmark, ζv. The value sn of the n-th bin is defined by

sn =
1

C
∑

(x,y)i∈ζv

N ((x, y)i)δ(γ[I((x, y)i]− n) (1)

whereN (·) defines a Gaussian-based kernel function which assigns higher weights to the pixels
near the centroid than pixels at the borders of the landmark, and C is a normalization constant
(C =

∑N ((x, y)i)) [4]. δ is the Kronecker delta function and γ is a quantization function,
which associates with each observed pixel value I((x, y)i) a particular bin index. Finally, it
must be commented that in our implementation, the CIELab colour space has been chosen to
the hierarchical grouping algorithm and also to characterize the colour of the landmark. We
have also chosen to quantize the histogram in 16 bins, resulting in a landmark descriptor of 16
x 16 x 16 scalar values.

In order to compute the similarity between kernels (regions), Comaniciu et al [4] propose a
metric derived from the Bhattacharyya coefficient. The distance between the discrete distribu-
tions p and q associated to two visual landmarks is defined as:

d(p,q) =
√

1− ρ[p̂, q̂] (2)

where

ρ[p̂, q̂] =
m∑
i=1

√
p̂i · q̂i (3)

being p̂i and q̂i the corresponding bins of the discrete representations p and q, respectively.

• Landmark positioning. In a mobile robotic navigation framework, each detected landmark must
be located in the 3D world. To do that, we can choose a set of stable region points which are
subsequently used for referencing the landmark position. These points can be characterized
by their Cartesian coordinates provided by a stereoscopic vision system. In order to include
these regions as landmarks in a mobile robotic navigation framework, it is usually necessary to
estimate the landmark position uncertainties.

Given the two matched pixels associated to a landmark point, the corresponding 3D point co-
ordinates can be computed according to

z =
b · f
d

x =
(u− Cx)
Du · f · su

z y =
(v − Cy)
Dv · f

z (4)

(Cx, Cy), b and f being the image center, stereo camera baseline and camera focal length,
respectively. Du · su and Dv are the number of pixels per mm for the x and y axis. All of
them are calibration parameters. Finally, d and (u, v) are the disparity value and the image
coordinates associated to the point. Using a first order approximation, we have

σ2
z ≈

(b · f)2

d4
σ2
d → σz ≈

σd
b · f

z2 (5)



Then, the covariance matrix of this point is
(u−Cx)
Du·f ·su

2 (u−Cx)
Du·f ·su

(v−Cy)
Dv ·f

(u−Cx)
Du·f ·su

(u−Cx)
Du·f ·su

(v−Cy)
Dv ·f

(v−Cy)
Dv ·f

2 (v−Cy)
Dv ·f

(u−Cx)
Du·f ·su

(v−Cy)
Dv ·f 1

 (
σd
b · f

z2)2 (6)

It can be noted that all values of the covariance matrix depend on the estimate of σd. If the point
positions are observed with a standard deviation of one pixel, then σd can be fixed to

√
2.0

pixels [7].

In this work, we represent landmarks by sets of dominant points extracted from their outer boundaries.
If the visual landmark is static and these dominant points are reliably computed, then they will be
always located at the same world position. That is, the algorithm could detect or not these points,
but if they are detected, their 3D world position will be always the same. This is not true for all
characteristic points which can be employed to reference a visual landmark, which could depend on
the fact that the landmark will be not occluded (e.g., the center of mass or centroid of the landmark).
Next section describes the algorithm we employ to detect these dominant points.

3 Adaptive Approach for Dominant Point Detection

Dominant points are representative features for the object contours which can be mainly detected us-
ing polygonal approximation approaches or corner detectors. The goal of the first group of approaches
is to represent the contour with the least number of straight–line segments. However, in most cases,
the number and position of the detected segments differ with variation of size and orientation of the
shape. This limits its use to applications such as partial shape matching or recognition. Corner detec-
tors works by locating the dominant points of the approximating polygon directly through detecting
the points with local maxima curvature. Then, they usually conduct two consecutive stages: curva-
ture estimation and local maximum curvatures locating. Fig. 2 presents an example where dominant
points are detected by thresholding the estimated curvature function. Figs. 2c-k show the dominant
points detected over shapes of the same object which have been affected by affine transformations.
Obtained results demonstrate the high stability of the detected dominant points. For this reason, we
have adopted a corner detector for dominant point selection.

When a corner detector is employed, dominants points are identified as the points with local extreme
curvature. In the continuous case, the curvature of a point is defined as the rate of change between the
tangent angle and the arc length. Let C(t) = (x(t), y(t)) be a parametric plane curve. Its curvature
function κ(t) can be calculated as [17]

κ(t) =
ẋ(t)ÿ(t)− ẍ(t)ẏ(t)
(ẋ(t)2 + ẏ(t)2)3/2

(7)

This equation implies that estimating the curvature involves the first and second order directional
derivatives of the plane curve coordinates, (ẋ, ẏ) and (ẍ, ÿ) respectively. This is a problem in the
case of computational analysis where the plane curve is represented in a digital form and directional
derivatives cannot be exactly computed. To solve this problem, the curvature of each contour point is
calculated using the information of the neighboring points. Those neighboring points are designated
as the region–of–support of each contour point.



Figure 2: a) Shape #1; b) adaptive curvature function associated to a) and c-k) dominant points detected over
transformed shapes. Curvature functions have been estimated using the Bandera et al’s algorithm [3] to compute
the region–of–support and the cosine measurement for curvature calculation.

From the pioneering paper of Teh and Chin [19], many researchers have argued that the estimation of
the shape curvature relies primarily on the precise calculation of the region–of–support associated to
each contour point. Let C be a digital curve defined as a set consisting of N consecutive points

C = {pi = (xi, yi)}Ni=1 (8)

An adaptive curvature–based approach for dominant point detection must solve three main problems:

• Estimation of the region–of–support associated to each contour point. If both region arms have
the same length, then it will be defined by t[i], which will be the same for both region arms.
Otherwise, it will be defined by the length of the left and rigth arms, tb[i] and tf [i], respectively.

• Given a region–of–support, computing the curvature value associatted to each contour point

• Choosing the set of dominant points from the whole curvature function

Next sections describe the algorithms employed to estimate the region–of–support and curvature asso-
ciated to each contour point. Once the curvature has been computed for every contour point, dominant
points will be obtained by thresholding the curvature values [3].



3.1 Estimation of the Region–of–support

In this work, we use the Bandera et al’s proposal to estimate the region–of–support [3]. This approach
calculates the maximum length of contour presenting no discontinuities on the right (forward) and
left (backward) sides of the working contour point i: tf [i] and tb[i], respectively. tf [i] is calculated by
comparing the Euclidean distance from point i to its tf [i]-th neighbour (d(i, i+ tf [i])) to the length of
the contour between both points (l(i, i+ tf [i])) which is defined as

l(i, i+ tf [i]) =
tf [i]−1∑
j=i

d(j, j + 1) (9)

Both distances tend to be equal in absence of corners, even if contours are noisy. Otherwise, the
Euclidean distance is quite shorter than the contour length. Thus, tf [i] is the largest value that satisfies

l(i, i+ tf [i])− d(i, i+ tf [i]) < Uk (10)

being Uk a user-specified, constant value that depends on the noise level tolerated by the detector.
tb[i] is also set according to Eq. (10), but using i − tb[i] instead of i + tf [i]. The correct selection of
the Uk value is very important. Thus, if the value of Uk is large, tf [i] and tb[i] tend to be large and
some corners may be missed and, if it is small, tf [i] and tb[i] are always very small and the resulting
function is noisy. In our tests, this value has been fixed to 0.4.

3.2 Curvature Estimation

Many researchers have used the area of the triangle, formed by the outer boundary points, as the basis
for shape representations [1]. The proposed shape recognition system employs a curvature estimator
to characterize the shape contour which is based on this triangle–area representation (TAR). Given a
shape and, once our proposal have determined the local region–of–support associated to every point
of its contour, the process to extract the associated TAR consists of the following steps:

1. Calculation of the local vectors ~fi and ~bi associated to each point i. These vectors present the
variation in the x and y axis between points i and i+ tf [i], and between i and i− tb[i]. If (xi, yi)
are the Cartesian coordinates of the point i, the local vectors associated to i are defined as

~fi = (xi+tf [i] − xi, yi+tf [i] − yi) = (fxi
, fyi

)
~bi = (xi−tb[i] − xi, yi−tb[i] − yi) = (bxi

, byi
)

(11)

2. Calculation of the TAR associated to each contour point. The signed area of the triangle at
contour point i is given by [1]:

κi =
1

2

∣∣∣∣∣∣∣
bxi

byi
1

0 0 1
fxi

fyi
1

∣∣∣∣∣∣∣ (12)

3. TAR Normalization. The TAR of the whole contour, {κi}Ni=1, is normalized by dividing it by
its absolute maximum value.

When the contour is traversed in counter clockwise direction, positive, negative and zero values of
TAR mean convex, concave and straight-line points, respectively.



Figure 3: a) REX: a Pioneer 2AT robot from ActivMedia equipped with a stereo vision system, GPS and laser; and
b) some acquired left images (detected landmarks are represented by the ellipses drawn over the images).

4 Experimental Results

To test the validity of the proposed system, data was collected with an ActiveMedia Pioneer 2AT
robot mounted with an stereoscopic camera. The robot was driven through different environments
while capturing real–life stereo images. The stereo head is the STH-MDCS from Videre Design: a
compact, low–power colour digital stereo head with an IEEE 1394 digital interface. It consists of
two 1.3 megapixel, progressive scan CMOS imagers mounted in a rigid body, and a 1394 peripheral
interface module, joined in an integral unit. The camera was mounted at the front and top of the
vehicle at a constant orientation, looking forward. Images obtained were restricted to 640x480 pixels.
Figs. 3a-b show the robot used in the experiments and several acquired images. Detected landmarks
have been represented by the ellipses drawn over the images. It can be noted that we have also
overimposed a landmark index. This index has been obtained by matching landmark kernel–based
descriptors between consecutive frames.

4.1 Visual Landmark Detection

To quantitatively check the viewpoint invariance of the detector, we compare our method to other sim-
ilar approaches using the protocol proposed by Mikolajczyk et al [16]. The comparison database1 is
composed by eight different image sets that represent five changes in imaging conditions (viewpoint
changes, scaling, image blur, jpeg compression and illumination changes). A ground truth homog-
raphy transformations are provided between first images of the sequence (reference image) and the
other images. Fig. 4 shows an example from each image set. It must be noted that the set of pa-
rameters employed by the proposed approach has not been modified to deal with the different image
sets.

To evaluate the detection ability, the repeatability score is employed [16]. The objective of this test
is to measure how many of the detected regions are found in images under different transformations,
relative to the lowest total number of regions detected (where only the part of the image that is visible

1http://www.robots.ox.ac.uk/ vgg/research/affine/



Figure 4: Image examples of the eight sets used for comparison purposes.

in both images is taken into account). The measure of repeatability is the relative amount of overlap
between regions detected in the reference image and in the other image. This region is projected
onto the reference image using the homography relating the images. It must be noted that the output
for our detector is a set of arbitrarily shaped regions. However, for the purpose of the comparisons
using this protocol, the output region of all detectors are represented by an ellipse. In our case,
ellipses which have the same first and second moments as the detected regions are used to approximate
them. The proposed detector is compared to the Hessian–Affine detector [14], the maximally stable
extremal region detector (MSER) [12] and the intensity extrema-based region detector (IBR) [20].
These approaches have been selected because they obtain the highest scores in many cases in the
work of [16]. Besides, as it is mentioned in this work, the MSER and IBR detectors are the best
choices if only a very small number of matches is needed (e.g. to localize a mobile robot). For all
experiments, the default parameters given by the authors are used for each detector. The repeatability
for several sets of images are illustrated in Fig. 5. Results for the rest of sets looks similar. They
show that the proposed detector ranks similar to the MSER. In the different sequences, the proposed
approach only detects a reduced set of regions and the thresholds can be set very sharply, resulting in
very stable regions. Besides, the hierarchical processing allows the method to detect these regions at
a very low computational time (e.g., it takes less than 500 ms in a Pentium 4.2 GHz Linux PC, for the
image shown in Fig. 1a, which is 800 x 640 pixels).

4.2 Kernel–based Representation

The kernel–based descriptor is evaluated using the recall-precision criterion for image pairs, i.e. the
number of correct and false matches between two images [15]. Recall is defined as the number of
correctly matched regions with respect to the number of corresponding regions between two images
of the same scene. The precision is defined as the number of correct matches with respect to the
total number of matches. The results are represented with recall versus 1-precision. Fig. 6 shows
the results for several sets of images. Landmarkss have been detected using the perceptual–grouping
approach described in Section 2. Two visual landmarks are matched if the distance between their
descriptors is below a threshold U . The value of this threshold is varied to obtain the curves (see [15]
for further details). In Fig. 6, the kernel–based descriptor is compared with the SIFT [8] and the



Figure 5: Repeatability scores for GRAF, BIKES and LEUVEN sequences (see Fig. 4).

Figure 6: Recall vs. 1-precision curves for GRAF, BIKES and LEUVEN sequences (see Fig. 4).

cross–correlation (evaluated for a path of 11 x 11 pixels centered at the center of mass of the detected
landmark). From the results, it can be noted that the kernel–based descriptor performs better than
the rest of descriptors. The number of landmarks is significantly low, and they are not overlapped.
Besides, although the textured scenes contain similar motifs, the regions capture distinctive image
variations. For these reasons, distribution–based descriptors like the kernel–based one or the SIFT,
exhibit a good performance. On the other hand, the size of the kernel–based descriptor is significantly
larger than the rest of descriptors. This implies more computational time and storage resources, which
are compensated by its better performance, specially when dealing with real acquired images.

4.3 Corner–based Description

To evaluate the robustness to affine transformations of the dominant point detector, a similarity mea-
sure between affine–transformed landmark shapes and the original, have been computed. In our tests,
this measure is provided by the correlation between the curvature functions associated to both shapes.
For comparison purposes, other approaches have been also evaluated. Table 2 shows the obtained
results for some of the shapes on Fig. 2. Evaluated approaches have been classified according to the
algorithm they employ to estimate the region–of–support and to compute the curvature (see [2] for
further details).

From all conducted tests, it has been concluded that the best adaptive approach for corner detection



Region–of–support Curvature Fig. 2c Fig. 2d Fig. 2e Fig. 2f
Bandera et al Cosine 85.2 71.3 68.0 57.5
Marji and Siy Cosine 67.4 64.5 60.4 52.6
Bandera et al TAR 99.9 71.9 70.3 99.9
Marji and Siy TAR 64.6 77.1 77.7 93.6
Teh and Chin Cosine 96.1 87.1 95.2 76.5
Ray and Ray Cosine 94.2 65.7 59.0 47.9
Wu k-cosine 89.1 73.4 69.9 62.5

Table 2: Comparison of adaptive approaches.

combines the Bandera et al’s proposal for estimating the region–of–support [3] and the TAR approach
for curvature computing.

5 Conclusions and Future Work

Landmark–based maps constitute one of the most popular choices for environment mapping in mobile
robotics. In this paper, we describe a visual landmark detection and description system. The detection
stage is achieved using a perceptual–based hierarchical algorithm. On the other hand, dominant points
detected over the landmark contour are used to locate the entire landmark in the 3D real world. The
visual appearance of detected landmarks is characterized by a kernel–based representation.

Among other issues, the success of a landmark–based representation is conditioned on the availability
of fast and reliable algorithms which will be able to provide viewpoint–independent detection and
recognition of landmarks. If we assume the local planarity of landmarks and adequacy of the affine
approximation of the geometric changes induced by the movement of the robot’s vision system, any
photometrically normalized image measurement expressed in a local affine frame coordinate system
is viewpoint–invariant. Characterizing the landmark by a set of dominant points allows to define a
local region–centered, affine–invariant coordinate system, which will permit to solve all six degrees
of freedom which an affine transformation possesses. It must be noted that affine coordinate systems
cannot be constructed directly from interest point detectors, like the SIFT [8]. In this sense, our
proposal is more related to region–based detectors (e.g. the MSER [12] or the IBR [20] detectors).
However, contrary to these proposals, the proposed approach works in the scale–space provided by
the irregular pyramid. In any case, extensive tests must be conducted to evaluate the advantages
of the proposal with respect to other region–based detectors. Future works will be also focused on
the development of an algorithm which allows to track the landmarks in presence of occlusion and
false detections, and on the integration of this system into a simultaneous localization and mapping
(SLAM) framework.
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