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Abstract
Multi-spectral recording systems are used in numerous applications ranging from quality as-
surance over biometrics to remote sensing. This paper reports on the feasibility of a LED-based
multi-spectral imaging system where the spectral characteristics of the illumination is changed
by activating different LEDs. The multi-spectral images are captured by a cost-efficient CCD
camera. We focus here on applying methods from sensor fusion to increase the classification
performance. Various features are generated from the different channels of the multi-spectral
images. The most discriminative features are then selected by a forward selection strategy. We
demonstrate our feature-based approach in human vein detection. Various test data have been
recorded by our prototype of the LED-based multi-spectral capturing system and have served
as basis for the experimental evaluation. A detection performance of at least 96 % has been
achieved.
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1 Introduction

Multi-spectral recording systems are used in numerous applications ranging from quality assur-
ance over biometrics to remote sensing. Multi-spectral imaging (MSI) is a recent technology
that allows the acquisition of a spectrum for each pixel (or on images) resulting in superior
quality compared to traditional RGB imaging. [7] The objects of interest often have distinctive
characteristics at specific wavelengths. MSI exploits these characteristics which typically re-
sults in better performance than in monochrome or color (RGB) imaging. MSI systems are also
available for UV (ultraviolet), NIR (near-infrared) or even MIR (mid-infrared).

The classical approach to record multi-spectral images is to use spectrographs or tunable filters.
Both methods achieve a spectral resolution down to a few nanometers. Gata [4] for example
reports that a resolution of 40nm and less can be achieved. However, these capturing systems
are one order of magnitude more expensive than monochrome or color cameras. For a num-



ber of applications a lower spectral resolution is sufficient which imposes lower requirements
on the capturing equipment. One example for such a multi-spectral imaging equipment is a
LED-based capturing system. These systems are comprised of a sensor (and optics) capable to
capture images within the overall spectral range of interest. The illumination of the object can
be changed by switching on and off LEDs emitting light at different frequencies. Thus, the same
optics and sensor are used to capture images of the object with changing but controlled illumi-
nation. This setting results in a significantly reduced hardware costs compared to spectrographs
or equipment based on tunable filters.

Even though the components are readily available, to the best of our knowledge such LED-based
MSI systems are currently not (yet) commercially available. However, the simple hardware set-
ting induces also some disadvantages. First, the spectral resolution is determined by the set
of different illuminations which can be generated by the LEDs. Second, since LEDs mounted
on different positions are switched on in different patterns, the illumination may become in-
homogeneous among the different spectral ranges. The effects of these drawbacks must be
compensated in this low-cost LED-based system. Sensor fusion is a mechanism that allows to
combine different sensor data resulting in a better result than the source data.

The main goal of this work is to demonstrate the advantages of sensor fusion of such a LED-
based multi-spectral capturing system. We focus here on applying methods from sensor fusion
to increase the classification performance. Various features are generated from the different
channels of the multi-spectral images. The most discriminative features are then selected by a
forward selection strategy. The benefit of this feature-based fusion approach is that the features
might be easier interpreted by humans and indiscriminate parts of the large multi-spectral space
can be discarded from training and classification. This helps to reduce the computational load
and memory requirement. We demonstrate our feature-based approach in human vein detec-
tion. Various test data have been recorded by our prototype LED-based multi-spectral capturing
system and have served as basis for our experimental evaluation. A detection performance of at
least 96 % has been achieved.

The remainder of this paper is organized as follows. Section 2 briefly summarizes related work
on multi-spectral imaging in medical applications. Section 3 introduces our image acquisition
system. Section 4 focuses on our feature-based fusion approach and describes the implemented
methods for feature extraction, feature selection and classification in more detail. Section 5
presents the test data used for our evaluation and the achieved experimental results. Section 6
concludes the paper with a short discussion and an outlook on future work.

2 Related Work

MSI has been successfully applied in medical imaging over the last years. The following para-
graph briefly describes a few examples:

Wieringa et al. [11] use the fact that in near infrared (NIR) arteries show higher contrast against
the myocardium. They recorded images in the spectrum of the visible light and the NIR. The
recorded images are then fused to detect (and highlight) arteries. Yamaguchi et al. [12] demon-
strate that MSI can be used in dermatology to improve the color reproduction accuracy of skin
lesions. The goal of this work was to explore the spectral feature of skin disease using the multi-



spectral color enhancement technique and to support quantitative diagnosis. Angelopoulou et
al. [1] use MSI in the visible range of the electromagnetic spectrum to determine the skin re-
flectance curve. A pattern which is in 95% directly tied to human skin composition could be
figured out. Sets of basic functions have been investigated which enable the development of a
model that closely approximates the skin spectral distribution.

The ability to detect vein patterns has applications in medicine and biometrics. Lingyu and
Lingham [6] use near- and far-infrared imaging to detect vein patterns for a biometric applica-
tion. Vein pattern images were acquired from the back of the hand, the palm and the wrist.

Crisan et al. [2] describe a low-cost vein detection system using a LED-based NIR illumina-
tion. Their detection system exploits gray-level images at 740nm and applies low-level image
processing such as edge detection and thresholding.

Paquit et al. [9] present a system for localizing near-surface veins using NIR imaging and struc-
tured light. Their system employs an array of LEDs comprising six wavelengths bands with
center wavelengths ranging from 740nm to 910nm. To maximize the vein contrast they deter-
mine the optimal combination of bands for a given subject using linear discriminant analysis.
However, fusion of the multi-spectral images is not performed. In [8] segmentation is improved
using different multi-spectral projection techniques, a broadband illumination source, and ac-
counting for the topography of the skin surface.

3 LED-based Multi-spectral Image Acquisition

Figure 1 shows our LED-based multi-spectral capturing system. Images are captured using a
conventional color CCD camera (uEye UI-2210SE) with the NIR blocking filter removed. The
scene is lit in turn by 14 LED bands with center wavelengths ranging from 395nm to 940nm.
Each band consists of two LEDs: these are arranged into two banks, one on either side of the
camera. The LED banks make an angle of 30◦ to the camera axis.

The response of the camera to different bands varied widely, for this reason it was necessary
to adjust the exposure time accordingly. During image capture the exposure time for each
band was adjusted to maximize response whilst ensuring that no more than 1% of pixels were
saturated. Flatfielding was used to remove any spatial variation in incident intensity.

Figure 2 shows sample spectral images captured with our LED-based image acquisition pro-
totype. Channels 1 to 11 represent images captured with different LED-based illuminations at
wavelengths ranging from 395nm to 940nm. Channels 12 to 14 correspond to the native RGB
channels of the sensor when the object is illuminated with white light. Channel 15 is the color
image of the native RGB channels.

4 Feature-based Fusion

We apply our multi-spectral image acquisition system to the automatic detection of human
veins. We treat this as a two-class classification problem. The key steps of this approach are
feature extraction, feature selection and classification. First, features are extracted from the
multi-spectral images. Second, a subset of distinctive features is chosen. Finally, the selected



Figure 1: The prototype of our LED-based multi-spectral capturing system.

feature set is used by a classifier. This paper is concerned with image fusion: we will concentrate
on steps one and two.

4.1 Feature Extraction

Features should describe the relevant properties of the data set in a more compact, distinctive
and robust form. We focus on the generation of simple features that use the characteristics of
a very small spatial neighborhood, i.e., at the level of single pixels or small blocks of pixels.
In a pre-processing step, the pixel values of all channels are mapped to [0 . . . 1] by a linear
transformation.

Table 1 summarizes the 144 features that were generated from the 14 different channels of the
multi-spectral images. These features have been created in a way that the contrast between
foreground and background (in our case veins and skin) is improved. The feature extraction
methods are categorized as follows. Basic pixel statistics such as mean, standard deviation
(stdev), median, minimum (min) and maximum (max). Spatial filters such as band pass, median
and standard deviation filters are applied for generating some features. The block size for these
filters affects the quality of the derived feature. A block size of 11 × 11 pixels achieved a
good compromise between suppressing small structures such as hairs and strengthening the
larger vein structures. Band pass filters help to reduce the detrimental effects of image noise
and hairs. Noise could be successfully attenuated and the contrast between skin and veins was
increased. However, we were unable to completely remove the effect of hairs.



Figure 2: The 15 spectral images (channels) of a human hand captured with our prototype equipment.



feature index feature description
1 first principle component of ch5 to ch11

2 stdev-f(f1)
3 colorgrad(mean(bp-f(ch9) to bp-f(ch11)), stdev(bp-f(ch9) to bp-f(ch11)))
4 mean(ch2 to ch4)
5 mean(ch8 to ch11)
6 f5 − f4

7 stdev-f(f6)
8 median-f(f6)
9 min(bp-f(ch1) to bp-f(ch14))

10 max(bp-f(ch1) to bp-f(ch14))
11 mean(bp-f(ch1) to bp-f(ch14))

12. . .25 bp-f(ch1) to bp-f(ch14)
26. . .39 stdev-f(f12) to stdev-f(f25)
40. . .53 f12−mean-f(f12) to f25− mean-f(f25)
54. . .144 all pairwise differences of f12 to f25, i.e., f12 − f13 to f24 − f25

Table 1: List of all generated features fi from the multi-spectral images (channel ch1 to ch14). These features
correspond to the individual pixels of the registered images and are derived using simple operations such
as pixel statistics (mean, stdev, min, max) and spatial filters, i.e., band pass filters (bp-f), median filters
(median-f) and standard deviation filters (stdev-f), with a block size of 11× 11 pixels.

Principal component analysis (PCA) is applied to the pixel values of all channels to identify the
greatest variance of any projection of the data set. The first principle component is included in
the feature set. With some datasets higher order PCA components gave a good contrast between
foreground and background. This effect was not true for all datasets which means that they have
been identified as less robust for this application.

4.2 Feature Selection

Once the features have been generated a subset of discriminating features must be selected.
There are many feature selection methods known in literature (e.g., [5]). In this work we use
forward feature selection. This method resulted in a good compromise between feature size,
computational load of the selection process and performance of the classifier.

Forward feature selection starts with an empty set of selected features. At each iteration, it adds
the best feature from the set of unselected features to the set of selected features. The selection
process is stopped when adding a new feature does not result in a performance improvement.
The two important parameters for forward feature selection are (i) the performance criterion
for the feature set and (ii) the selection criterion for choosing the best new feature. We use
the performance of the classifier as first criterion which is in our case the area under the ROC
curve (AUC) [3]. Thus, the AUC is computed for all data sets at each iteration. The result of
this computation is stored in a two-dimensional matrix, where one dimension corresponds to
the number of features the other to the size of the test data. The second criterion defines what
feature to add to the set of selected features. Since the quality of each feature is represented by
a vector (one entry for each data set), different criteria are possible.



We compared three selection criteria: (i) minimize the performance variance, (ii) maximize the
average performance and (iii) maximize the minimum performance. The first criterion selects
the feature which provides the smallest variation among all data sets. The second criterion
selects the feature with the largest performance gain on average, whereas the third criterion
focuses on improving the performance of the ”worst” data set.

4.3 Classification

The overall goal is to produce a binary image showing the two detected classes. In our case
these classes are the veins and the skin. In an initial step good features are identified and an
algorithm is trained to fuse those features. The whole process of pattern detection is divided
into several phases (image recording, feature extracted, fusion and classification).

At the beginning the images are recorded at different illumination wavelengths. All images
are then registered resulting in the multi-spectral image of the object. From these images the
features which have been identified in the initial step are extracted. These features are fused
with the algorithm (which has been trained in the initial phase). In our case the linear discrim-
inant analysis (LDA) is used for feature fusion. LDA is a very well-known technique for 2-set
classification and achieves a reasonable performance requiring few computation and memory
resources [10]. The result of this fusion process is a monochrome image. Our system uses a
global thresholding algorithm to classify the pixels.

5 Experimental Results

5.1 Multi-spectral Data Sets

Our multi-spectral image acquisition system generates a matrix of 14× 480× 640 pixels. The
14 channels of this multi-spectral image are registered; each pixel is represented by a scalar
value. Seven multi-spectral images have been selected as evaluation data sets for this work.
These images have been captured from hands and lower arms of three different persons. The
data sets have been labeled by hand to identify pixels representing veins and skin, respectively
(cp. Figure 3). The regions of interest are selected in a way that no border regions of the hands
are used. For evaluation the data inside these defined regions of interest are used.

For the evaluation, the data sets are partitioned into three groups. The training data is used to
train the LDA classifier. The validation data is used to compute the classification performance
during feature selection. The test data is used to compute the classification performance with
the final feature set. In our evaluation, we partitioned the data set into 15% training data, 15%
validation data and 70% test data. For all multi-spectral images, the pixels have been randomly
and uniquely assigned to the three data set groups.

5.2 Evaluation of the Feature Selection

Figure 4 compares the different selection criteria. The criterion ”minimize the performance
variance” (top left) attempts to generate a robust feature set by selecting the feature with small-
est performance variations among all data sets. The achieved classification performance is quite
good (AUC values between 0.98 and 1.0), however the size of the feature set is pretty large (28



data set 1 data set 2 data set 3

Figure 3: Labeled RGB image of data set 1 to 3 (veins - blue, skin - red, ROI - green).

Figure 4: Comparison of the different selection criteria: (top left) minimize the performance variance, (top
right) maximize the average performance and (bottom) maximize the minimum performance.



features). The second criterion (top right) selects the feature which maximizes the average
classification performance over all data sets. The achieved classification performance is com-
parable to the first criterion, but the size of the feature set is smaller (23 features). The third
criterion achieves a slightly worse classification performance, however only 10 features have
been selected.

When comparing the individual features which have been selected by the three criteria, features
f2 and f3 are included in all feature sets. Also note that first single feature selected results in a
classification performance of 0.94 on average and 0.84 for the ”worst” data set.

5.3 Cross Validation

For testing the cross validation the datasets are split to two different clusters. One cluster is used
for feature selection and training of the algorithm. The other cluster is used as test data only.

The data that are used for cross validation are seven datasets showing hands and lower arms
of three different persons. As the scenes and surface structure of all the test persons differ, the
algorithm has to be very robust to provide a good classification for all datasets. For each dataset
the region of interest was selected individually. The focus of the work was to separate skinre-
gions and veins. Therefore the regions of interest have been selected in a way that no bordering
effects (effects due to bad illumination at the transmission between hand and background) occur.

Figure 5 shows the achieved result. For the feature selection metric maximization of the min-
imum was used. The horizontal axis shows the number of used features and the vertical axis
shows the AUC. The dotted lines represent the datasets which have been used for feature selec-
tion and training. The datasets which are displayed with a solid line are only used for testing.
It can be seen that all of the datasets which have not been used for training are classified with a
quite high performance. The worst performance is achieved using dataset 5, but even here the
AUC is larger than 0.96.

6 Conclusion

In this paper we have presented a feature-based fusion approach which has been demonstrated
in detecting human veins. The multi-spectral images have been captured by a LED-based cap-
turing system. This prototype captures spectral images with 11 different LED-generated illumi-
nations at wavelengths ranging from 395nm to 940nm. We extract a total of 144 features from
these multi-spectral images. The most discriminant features are selected by a forward selection
strategy. We evaluated three different selection criteria (i) minimize the performance variance,
(ii) maximize the average performance and (iii) maximize the minimum performance. Depend-
ing on the selection criterion 10 to 28 features have been selected for classification which based
on a standard LDA algorithm.

Seven multi-spectral images have been selected as evaluation data set for this work. These
images have been captured from hands and lower arms of three different persons. After train-
ing a detection performance of always better than 96 % has been achieved. This promising
result leverages further research toward the development of a MSI-based vein-detector on an
embedded platform.



Figure 5: Performance of LDA with maximize minimum metric and cross validation.

There are several directions for future work. First, different and potentially more complex fea-
tures can be extracted and tested whether they provide more discriminant information. We
expect to gain some discriminative power from more spatial features, since the human vein
patters have a strong spatial characteristic. Second, more comprehensive data recording and ex-
perimental tests are required to support our initial performance results. A related future activity
would then be to compare our vein detection system with others.
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