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Abstract
Camera-based object detection and tracking are image processing tasks that typically do not take 3D
information into account. Spatial relations, however, are sometimes crucial to judge the correctness
or importance of detection and tracking results. Especially in applications with a large number of
image processing tasks running in parallel, traditional methods of presenting detection results do not
scale. In such cases it can be very useful to transform the detection results back into their common 3D
space. We present a computer graphics system that is capable of showing a large number of detection
results in real-time, using different levels of abstraction, on various hardware configurations. As
example application we demonstrate our system with a surveillance task involving eight cameras.

1 Introduction

In the image processing research community the common way of presenting the results of, for ex-
ample, a new object detection algorithm is to show grayscale images with colored rectangles around
the detected objects. This approach permits to compare different algorithms by running them on the
same set of benchmark images or videos. Both false positives and false negatives are easy to spot and
to compare using this approach.

However, in real-world applications this might not be the best way to visualize the results of detection
or tracking algorithms. While researchers naturally focus on the methods and algorithms, users are
typically only concerned with the meaning of a detection event. In some cases they are interested in
specific events or locations, while at other times a more ambient impression may be sufficient. The
visualization must be scalable, from individuals to groups and to flows, as well as from concrete video
pixels to rectangles to more abstract motion patterns.

A detailed 3D model overlaid with full video and detection information from multiple camera sources
can still be remarkably irritating for a human operator. To realize and manage different modes of in-
formation presentation are a challenge not only from a computer graphics point of view, as image
synthesis problem, but also a comfortable user interface is a not easy to realize – let alone the prob-
lem of intuitive 3D navigation. In principle different options exist to obtain a coherent integrated



information space, as outlined in the next section. We propose to use a scriptable scene graph en-
gine that already has much of the required functionality built in. In this paper we describe the basic
system, as well as the enhancements we needed to develop in order to accommodate video textures
and to integrate the image processing information. Finally we demonstrate what needs to be done to
realize an example application, a surveillance task of a building complex using eight cameras.

2 Related Work

In principle a whole number of different options exist to realize the vision of an integrated 3D in-
formation space as an infrastructure for computer vision researchers to visualize the results of image
processing algorithms, such as object detection, object recognition, and object tracking.

The first, most straightforward option is to use a standard low-level 3D API such as OpenGL or
DirectX to directly code video billboards, to simply replace the colored 2D rectangles by textured
3D quads. Although absolutely feasible, this approach has little sustainability as soon as more and
more standard geometry (modeled buildings, materials, interaction components) are to be integrated
to achieve a more realistic result. So this approach is not likely to result in a flexible, sustainable,
easy-to-use infrastructure.

The next option is to use a standard game engine. This is absolutely feasible as well. However, the
drawback may be that game engines are typically highly optimized to guarantee a fluent game play.
An open architecture for easy extensibility is often less of a concern, which impedes the flexibility.

Consequently, the resulting option is to use a scene graph engine. Our solution is based on the open
source scene graph system OpenSG by Reiners et al. [10] in combination with the Generative Model-
ing Language (GML) by Havemann [5]. Our visualization framework is similar to a presentation tool
for cultural heritage proposed in [6].

The general problem of visualizing image recognition results in 3D is not new, of course. Hall et al.
present an integrated visualization of outdoor scenarios and live video images [4]. Although they have
a good integration of multiple remote video cameras their system is restricted to flat outdoor scenes.

Impressive approaches that are very similar to our surveillance application were presented by Neu-
mann et al. [7], [13] and Sawhney et al. [12]. Neumann presents a system that implements projecting
images of cameras. Sawhney describes a system called Video Flashlight for projecting videos of static
and moving cameras onto a 3D model. It also uses a shadow mechanism on the graphics hardware and
is able to use smooth blending between two images that partially overlap. However, these systems are
aiming at the specific surveillance setting. The goal is not so much to provide a general infrastructure.

Fleck et al. present a distributed network of smart cameras for real-time tracking [2]. Similar to our
solution, they integrate 2D detection results into a 3D scene as billboards. 3D models of the observed
area are acquired as point clouds. Their system allows large scale scenarios with hundreds of cameras.
However they only show the detected objects as billboards but do not project the whole video image.
In areas of low point density their visualization exhibits disturbing holes.

The implementation of our video texture projection is based on a combination of projective texture
mapping [14] and depth map shadows [9].



Figure 1: Overview of the visualization system. The Generate Modeling Language (GML) script defines all of the
main aspects of the application. It takes care of the scene initialization, animations and user interactions. The
definition of the video input data is stored in a separate location for each video texture.

For our example application we tried different techniques for the visualization of buildings. Among
others Wang et al. show methods to visualize multiple floors simultaneously, e.g. floors of a building
can slide apart so that they do not occlude each other [16].

Automatic detection and classification of moving objects with multiple surveillance cameras was
presented by Collins et al. [1] We use the output of the person detector presented by Roth et al. [11].

3 System Overview and Input Data

Our proposed visualization system is a combination of a general OpenSG application and a script
defining the scenario specific parameters as proposed by Ousterhout in [8]. The input data consists of
a set of videos, detection results and a 3D model of the observed area. Figure 1 shows a schematic
overview of the system. The main application can connect to multiple OpenSG render servers to form
a visualization cluster. In this way it is possible to realize a tiled display or a CAVE like immersive
screen setup.

3.1 Video Input Data

The definition of a video source is encapsulated in a simple XML configuration file. Each camera is
defined in a separate file. A typical configuration file is shown in Figure 2.

Video images can be stored in video files or delivered via network from one or multiple custom video
servers. A network connection is defined by the server name, a port number and the server ID. Local
video files are defined by a file name with a path relative to the configuration file location.

The camera frustum is described by projectionDistance and aspectRatio. The projection distance
refers to the distance of the camera while capturing a one meter wide object filling the whole width of
the image. Lens distortions are ignored in the current implementation. The position and direction of
the camera as well as the up vector are defined as float triples. A ground plane is defined in the same
way by position and normal. The plane will be used to place the detections in 3D which is described
later on. All of the position definitions refer to the coordinate system of the 3D model.



...
<!-- the_camera -->
<camera position = "24.0,32.3,6.1" direction = "0.79,0.28,-0.54"

up = "0.4573,0.3078,0.8343"
projectionDistance = "0.86" aspectRatio = "1.333"/>

<!-- the_geometry -->
<geometry groundp = "0, 0, 0.36" groundn = "0, 0, 1"

humanheight = "1.85" rectangles = "detections/085.log" />
<!-- video source -->
<server videofile = "085.avi"

serverAdress = "localhost" serverPort = "5678" serverID = "1" />
<texture width = "512" height = "256" />

Figure 2: Example configuration file for a video source. The position of the camera, the ground plane and the
human height correspond to the coordinate system of the 3D model.

Figure 3: A typical area definition of detections in a video frame. In this example, three persons are detected. The
rectangles are stored in a simple text file together with a time stamp as a reference to the video frame.

The resolution of the input video is arbitrary. In the configuration file a different resolution can
be defined to deal with hardware restrictions or counteract performance issues. Depending on the
graphics hardware it may be necessary to choose a power-of-two width and height.

3.2 Detection Data

2D detections are defined as regions in the video frame. For now our solution supports image aligned
rectangular areas defined by two 2D points. This is the most common definition of regions in an
image. In principle our system allows to define an arbitrary number of detections for one video
frame.

Similar to the video frames, the rectangle coordinates can be read from a file or they are sent via
network. The file format for the detection and tracking results is very simple. It basically is a text
file with pixel coordinates of rectangles and a corresponding time stamp, as shown in Figure 3. Time
stamps are used to connect the rectangles to their video frame. We also support additional data like
IDs and certainty values for each rectangle.



Figure 4: Renderning of the same 3D model with OpenGL lighting (left) and with advanced lighting calculations
(right). The structure is recognized easier with advanced lights. Lighting can be precalculated (baked) to the
texture.

3.3 3D Model Preparation

A 3D model of the scenario is needed to create an integrated visualization of the image detections.
Geometric accuracy of the area observed by cameras is essential for a matching video back projection.
OpenSG offers loaders for the most common 3D file formats including OBJ, VRML and 3DS. But
more important, the GML is able to create generative models and geometry. For our example appli-
cation we generated a building complex with GML based shape grammars. That way it was possible
to add semantic information directly in the construction step.

It is necessary to address predefined parts of the model in the application script. For example a
selective display of a single floor is only possible, if the geometry parts of that floor can be identified.
This is done by giving unique names to nodes and sub graphs of the scene.

The straight forward way of rendering a 3D model using OpenGL lighting leads to artificial and
sometimes irritating results. Buildings in particular have many planar surfaces, a fact that amplifies
this effect (see Fig. 4). Advanced lighting techniques can create a more realistic and less confusing
look but need a lot of performance if calculated in real time. We recommend using professional render
software like Autodesk MayaTMto bake the illumination. Baking in this context means to calculate
the lighting effects in advance and store the data into a texture. OpenSG supports texture compression
which should be used for high quality visualizations as the amount of textures is quite big.

4 Technical Details of the Video Textures

To display a video in the 3D scene we need all of the information in the configuration file described in
Section 3.1. Since we use a single texture unit for each video, there is no upper limit for the number
of projected images. As described the image of an input camera and the detection rectangles can be
received via network or read from file. The image is converted into a texture with the target resolution
which is then used in a special material. For the rectangles we prepare some simple geometry and
apply the video texture material. The rectangles will be hidden until some of them are used to display
detections.



Figure 5: Multiple video textures are added to the scene by duplicating the geometry. The left image shows the
output of the video texture shaders which have discarded all pixels outside of the video image. In the right image
the video textures are combined with the original scene geometry.

4.1 Projective Texturing

Our approach to project the video onto the 3D scene uses the GL shading language (GLSL) which is
attached to a material. The material has to be applied to the scene, at least to the parts which are visible
in the video. The GLSL shader gets the camera parameters and the video image in form of a texture as
inputs. In the fragment shader we use the camera parameters to project the corresponding 3D world
position of each pixel into the 2D video image. If the shader calculation discovers a position outside
of the video image space, it discards the pixel. As the shaders knows the normal of the rendered pixel
it can also discard back facing fragments.

By now this would result in a selective scene showing only geometry within the view frustum of
the video camera (see Fig. 5). To compose the video texture with the original scene, a duplicate is
generated and rendered in addition. This allows combining multiple video textures with the texture
baked 3D scene even if the video areas are overlapping.

So far the video image would penetrate the whole 3D model within the camera frustum (see Fig. 6,
left image). We only want to project the images onto the visible surfaces from the camera position
(Fig. 6, right image). A slightly modified shadow algorithm is used to detect occluded areas. The
visualization uses an additional preceding render pass generating a depth map for each surveillance
camera. This depth map has to be updated only if the camera description changes. It represents the
first hit of the projection rays from the camera. In the final render step the distance between the
camera and the currently rendered pixel is compared to the first hit in the depth map. Pixels behind
the first hit are also discarded. A small offset is used to avoid artifacts due to numerical errors.

An important aspect is the modulation of the transparency of pixels. We included a fade effect for
pixels which are far away from the camera. To reduce the distraction from distorted textures the
projected image is also faded to transparent when viewed from an angle very different to the viewing
direction of the camera.

4.2 Visualization of Detected Objects

The detection areas of the video image are added into the 3D scene as planar rectangles. These
billboards are oriented to the respective video camera position and not to the viewer. It is assumed
that detected objects are always connected to the ground plane that was defined in the configuration



Figure 6: The video image is projected back into the 3D model. The yellow areas in the left Figure are in the
camera frustum but occluded by closer objects. Thus they are not visible from the camera position. A modified
shadow algorithm is used to remove the video image in these areas.

Figure 7: Different representations of a person detection in 3D: (a) Billboard with a thin colored surrounding line,
(b) additional geometry, (c, d) overlay marker which is not occluded by the scene.

file for the video texture. From the position of the camera and with the parameters of the frustum we
calculate a ray through the lower edge of the rectangle. By cutting the ground plane with this ray we
get the position of the rectangle in 3D space. For some scenarios it may be necessary to use the upper
edge of the rectangle because the lower part of the detection may be occluded in the video. In this
case a default height of objects is used to estimate the position of the rectangle. The rectangles are
placed right-angled to the ground plane.

The first implementation of the billboard technique revealed some drawbacks: 2D billboards are
hardly visible from the side or from a top view position. Also in more complex 3D scenes the rectan-
gles may be occluded by walls and other elements. To improve the visibility we added the possibility
to connect GML generated geometry with the billboards. This includes shapes like spheres or boxes
but also textual information. Overlaid renderings which are always visible help to signalize detections
even if the rectangle is occluded by parts of the scene. See Figure 7 for some examples of enhanced
billboard visualizations.

5 An Example Application

The presented rendering system was used to create a surveillance application for a small building
complex. The application was installed on a tiled display with four render machines (see Fig. 9).



Figure 8: The example application with integrated video textures projected onto the 3D model. The floors can
be hidden or slide apart like shown in the middle. Additional information can be added, for example 3D arrows
visualizing main motion directions.

We used the video recordings of eight static cameras and the results of the person detector by Roth et
al. Seven of the cameras were standing inside the buildings and one was located outside pointing to
one of the entrances. The scenario consists of four buildings with three floors and a basement. The
camera registration to the 3D model was done manually.

On the basis of floor plans we generated a model of the four buildings using the GML shape grammar.
Because of many similarities the creation was modularized and a quantitative model containing all
the rooms could be written in a short time. Manual measurement results were added in the camera
areas to reach accuracy in the range of a centimeter. With the shape grammar it was possible to
add a hierarchy with a naming scheme and additional information like decorations for rooms and
doors. Also segmentation into buildings, floors and smaller subparts is directly integrated into the
shape grammar. Finally we used the VRML file format to export the model to Autodesk Maya.
Global illumination was calculated and baked for each floor. For a nice appearance we added some
additional buildings of the surrounding area as transparent boxes.

5.1 The Application Script

The GML script for the application declaration is organized in two main parts: the initialization and
the user interactions part. In the initialization part the 3D scenario is generated. The external 3D
models are loaded and added to the scene graph. A ground plane is created directly with GML code.

After the 3D scene is ready the virtual video cameras are initialized. A subset of the surrounding
geometry is duplicated for each camera. In general it would be possible to make a copy of the whole
scene but we only need the parts which are within the camera’s field of view. As we segmented
the buildings in the creation step, needed parts can be identified by their name. The setup of the
video textures also includes the definition of geometry and its material for the enhanced billboard
visualization. For the surveillance application we use an overlay image to highlight detected persons
(see Fig. 7, right image). Billboards and extra geometry are then added to the scene graph as a sub
child of the duplicated scene. As an example, in this way it is possible to translate a selected floor and
the billboards will automatically stick to the floor.



In the next step we prepare the scene for user interactions. To look into lower floors of a building
we define two functions: One is to simply hide selective floors, the other is to slide open the building
floor by floor (see Fig. 8). For the sliding mechanism we add some additional transformation nodes.
Again the node selection by name is used. To store the visibility status of a floor we initialize a map
of floor names and Boolean values. Interaction functions can be toggled by the user via mouse or
keyboard on the same machine which runs the application and also via a network connection on a
remote machine.

5.2 Other 3D Information

The application script can integrate all kinds of additional information sources into the scene. As an
example we employ curved 3D arrows for visualizing main motion directions of crowds (see Fig. 8,
right image). To define such arrows a list of curve points can be read or directly used in the script.
Animated materials add an additional cue for the direction.

6 Future Work

Figure 9: An operator watching our test location on the tiled display. Video data of multiple cameras and other
input streams are combined into a single screen. Detected persons are highlighted by overlaid textures.

The transfer of large amounts of video data is still an issue, especially in a cluster setup. We currently
work on a scalable system with video servers that scale and compress video into the needed resolution
for the display. Size and frame rate of the videos should adapt according to the currently visible part
of the scene and it is preferable to use image compression for the OpenSG cluster. Additionally we
plan to update regions without motion less frequently to further reduce bandwidth usage. This could
also be managed by a common video codec.

We currently only support a single ground plane per camera for computing the 3D position of a
detection. In scenarios with multiple levels or stairs we plan to implement intersections with the



actual 3D model of the building. With a more accurate shape from the person detector we will also
increase visual quality using transparent areas in the billboards. We plan to replace the image of
detected areas with a background camera image to remove artifacts on the floor. Also individual
colors for specific tracked persons may be defined via rectangle IDs. Moving objects that are not
detected by the person detector will also be highlighted.

With usability experiments we plan to evaluate practical views of the 3D model, the suited types of
navigation as well as input devices for the common tasks of an operator. We also plan to test different
levels of abstraction like non-photorealistic rendering of the buildings.

7 Conclusion

We propose a real-time visualization system for integrating image based 2D detections into a 3D
scene. For visualization we show the natural inverse process of capturing a camera image: the pro-
jection of the image into the 3D scene. Optimized shading and transparency effects enhance quality
and usability.

The combination of detection results with a 3D scene is very useful for surveillance systems with
many cameras. An informal user study shows that watching a moving person over multiple video
camera images is much easier in a spatial coherent 3D environment. Other interesting events or
detections recognized by different input sensors can also be added to the system and displayed in the
same space.

With the scriptable scene graph engine it is possible to create a large variety of applications. Scripting
of geometry, materials and user interactions offer a comfortable and fast way of manipulating the
application. Using the OpenSG framework we also support large tiled displays and even immersive
systems like CAVEs.
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